Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel Quadratwurzel von 1.7x^2 = Quadratwurzel von 1477.7
Schritt 1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.2.1.2
Vereinfache.
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Benutze , um als neu zu schreiben.
Schritt 2.3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.1.3
Kombiniere und .
Schritt 2.3.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.4.2
Forme den Ausdruck um.
Schritt 2.3.1.5
Berechne den Exponenten.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Dividiere durch .
Schritt 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: