Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
Schritt 1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3
Schritt 3.1
Vereinfache den Zähler.
Schritt 3.1.1
Potenziere mit .
Schritt 3.1.2
Multipliziere .
Schritt 3.1.2.1
Mutltipliziere mit .
Schritt 3.1.2.2
Mutltipliziere mit .
Schritt 3.1.3
Addiere und .
Schritt 3.1.4
Schreibe als um.
Schritt 3.1.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache .
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Multipliziere .
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.1.3
Addiere und .
Schritt 4.1.4
Schreibe als um.
Schritt 4.1.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache .
Schritt 4.4
Ändere das zu .
Schritt 4.5
Addiere und .
Schritt 4.6
Kürze den gemeinsamen Teiler von und .
Schritt 4.6.1
Faktorisiere aus heraus.
Schritt 4.6.2
Kürze die gemeinsamen Faktoren.
Schritt 4.6.2.1
Faktorisiere aus heraus.
Schritt 4.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.6.2.3
Forme den Ausdruck um.
Schritt 5
Schritt 5.1
Vereinfache den Zähler.
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Multipliziere .
Schritt 5.1.2.1
Mutltipliziere mit .
Schritt 5.1.2.2
Mutltipliziere mit .
Schritt 5.1.3
Addiere und .
Schritt 5.1.4
Schreibe als um.
Schritt 5.1.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Vereinfache .
Schritt 5.4
Ändere das zu .
Schritt 5.5
Subtrahiere von .
Schritt 5.6
Kürze den gemeinsamen Teiler von und .
Schritt 5.6.1
Schreibe als um.
Schritt 5.6.2
Kürze die gemeinsamen Faktoren.
Schritt 5.6.2.1
Schreibe als um.
Schritt 5.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.6.2.3
Forme den Ausdruck um.
Schritt 5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Die endgültige Lösung ist die Kombination beider Lösungen.