Algebravorstufe Beispiele

Stelle graphisch dar f(x)=x^2+k
Schritt 1
Bringe alle Terme, die Variablen enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3
Bewege .
Schritt 2
Dies ist die Form einer Hyperbel. Wende diese Form an, um die Werte zu ermitteln, die benutzt werden, um die Scheitelpunkte und Asymptoten einer Hyperbel zu bestimmen.
Schritt 3
Gleiche die Werte in dieser Hyperbel mit denen der Standardform ab. Die Variable stellt das x-Offset vom Ursprung dar, das y-Offset vom Ursprung, .
Schritt 4
Der Mittelpunkt einer Hyperbel folgt der Form von . Setze die Werte von und ein.
Schritt 5
Berechne , den Abstand zwischen Mittelpunkt und Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ermittle den Abstand vom Mittelpunkt zu einem Brennpunkt der Hyperbel durch Anwendung der folgenden Formel.
Schritt 5.2
Ersetze die Werte von und in der Formel.
Schritt 5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5.3.3
Addiere und .
Schritt 6
Finde die Scheitelpunkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der erste Scheitelpunkt einer Hyperbel kann durch Addieren von zu ermittelt werden.
Schritt 6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 6.3
Der zweite Scheitelpunkt einer Hyperbel kann durch Substrahieren von von ermittelt werden.
Schritt 6.4
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 6.5
Die Scheitelpunkte einer Hyperbel folgen der Form . Hyperbeln haben zwei Scheitelpunkte.
Schritt 7
Ermittle die Brennpunkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Der erste Brennpunkt einer Hyperbel kann durch Addieren von zu gefunden werden.
Schritt 7.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7.3
Der zweite Brennpunkt einer Hyperbel kann durch Substrahieren von von ermittelt werden.
Schritt 7.4
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7.5
Die Brennpunkt einer Hyperbel folgen der Form . Hyperbeln haben zwei Brennpunkte.
Schritt 8
Bestimme den fokalen Parameter.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ermittle den Wert für den fokalen Parameter der Hyperbel mithilfe der folgenden Formel.
Schritt 8.2
Ersetze die Werte von und in der Formel.
Schritt 8.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.3.2
Mutltipliziere mit .
Schritt 8.3.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.1
Mutltipliziere mit .
Schritt 8.3.3.2
Potenziere mit .
Schritt 8.3.3.3
Potenziere mit .
Schritt 8.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 8.3.3.5
Addiere und .
Schritt 8.3.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 8.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.3.3.6.3
Kombiniere und .
Schritt 8.3.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.3.6.4.2
Forme den Ausdruck um.
Schritt 8.3.3.6.5
Berechne den Exponenten.
Schritt 9
Die Asymptoten folgen der Form , da diese Hyperbel nach oben und unten offen ist.
Schritt 10
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Addiere und .
Schritt 10.2
Mutltipliziere mit .
Schritt 11
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Addiere und .
Schritt 11.2
Schreibe als um.
Schritt 12
Diese Hyperbel hat zwei Asymptoten.
Schritt 13
Diese Werte stellen die wichtigen Werte für die graphische Darstellung und Analyse einer Hyperbel dar.
Mittelpunkt:
Scheitelpunkte:
Brennpunkte:
Exzentrizität:
Fokaler Parameter:
Asymptoten: ,
Schritt 14