Algebravorstufe Beispiele

Stelle graphisch dar x+(2( natürlicher Logarithmus von x))/x
Schritt 1
Finde die Asymptoten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Da der Grenzwert nicht existiert, gibt es keine horizontalen Asymptoten.
Keine horizontalen Asymptoten
Schritt 1.3
Es sind keine schiefen Asymptoten für logarithmische und trigonometrische Funktionen vorhanden.
Keine schiefen Asymptoten
Schritt 1.4
Das ist die Menge aller Asymptoten.
Vertikale Asymptoten:
Keine horizontalen Asymptoten
Vertikale Asymptoten:
Keine horizontalen Asymptoten
Schritt 2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Dividiere durch .
Schritt 2.2.1.2
Der natürliche Logarithmus von ist .
Schritt 2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2
Addiere und .
Schritt 2.2.3
Die endgültige Lösung ist .
Schritt 2.3
Konvertiere nach Dezimal.
Schritt 3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.2.2
Die endgültige Lösung ist .
Schritt 3.3
Konvertiere nach Dezimal.
Schritt 4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.2.1.2
Potenziere mit .
Schritt 4.2.1.3
Schreibe als um.
Schritt 4.2.1.4
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.2.2
Die endgültige Lösung ist .
Schritt 4.3
Konvertiere nach Dezimal.
Schritt 5
Die logarithmische Funktion kann graphisch dargestellt werden mithilfe der vertikalen Asymptote bei und den Punkten .
Vertikale Asymptote:
Schritt 6