Algebravorstufe Beispiele

Stelle graphisch dar x+x/(|x|)
Schritt 1
Bestimme den Definitionsbereich von , sodass eine Liste von -Werten ausgewählt werden kann, um eine Liste von Punkten zu erzeugen, die dazu dient, die Betragsfunktion graphisch darzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 1.2.2
Plus oder Minus ist .
Schritt 1.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
Für jeden Wert, es gibt einen Wert. Wählen Sie einige aus Werte aus der Domäne. Es wäre sinnvoller, die Werte so zu wählen, dass sie in der Nähe des Wert des Absolutwert-Scheitelpunkts.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.2.2
Subtrahiere von .
Schritt 2.1.2.3
Die endgültige Lösung ist .
Schritt 2.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.2.2.3
Die endgültige Lösung ist .
Schritt 2.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.2.2
Addiere und .
Schritt 2.3.2.3
Die endgültige Lösung ist .
Schritt 2.4
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.4.2.1.2
Dividiere durch .
Schritt 2.4.2.2
Addiere und .
Schritt 2.4.2.3
Die endgültige Lösung ist .
Schritt 2.5
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 3