Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
Schritt 1
Schritt 1.1
Schreibe die Gleichung in Scheitelform um.
Schritt 1.1.1
Wende die quadratische Ergänzung auf an.
Schritt 1.1.1.1
Vereinfache den Ausdruck.
Schritt 1.1.1.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.1.1.1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.1.1.1.2
Wende das Distributivgesetz an.
Schritt 1.1.1.1.1.3
Wende das Distributivgesetz an.
Schritt 1.1.1.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.1.1.1.2.1
Vereinfache jeden Term.
Schritt 1.1.1.1.2.1.1
Mutltipliziere mit .
Schritt 1.1.1.1.2.1.2
Mutltipliziere mit .
Schritt 1.1.1.1.2.1.3
Bringe auf die linke Seite von .
Schritt 1.1.1.1.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.1.1.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.1.1.2.1.5.1
Bewege .
Schritt 1.1.1.1.2.1.5.2
Mutltipliziere mit .
Schritt 1.1.1.1.2.2
Addiere und .
Schritt 1.1.1.1.3
Bewege .
Schritt 1.1.1.1.4
Stelle und um.
Schritt 1.1.1.2
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.1.1.3
Betrachte die Scheitelform einer Parabel.
Schritt 1.1.1.4
Ermittle den Wert von mithilfe der Formel .
Schritt 1.1.1.4.1
Setze die Werte von und in die Formel ein.
Schritt 1.1.1.4.2
Vereinfache die rechte Seite.
Schritt 1.1.1.4.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.4.2.1.1
Faktorisiere aus heraus.
Schritt 1.1.1.4.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.1.4.2.1.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.4.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.4.2.1.2.3
Forme den Ausdruck um.
Schritt 1.1.1.4.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.4.2.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.4.2.2.2
Bringe die negative Eins aus dem Nenner von .
Schritt 1.1.1.4.2.3
Mutltipliziere mit .
Schritt 1.1.1.5
Ermittle den Wert von mithilfe der Formel .
Schritt 1.1.1.5.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.1.1.5.2
Vereinfache die rechte Seite.
Schritt 1.1.1.5.2.1
Vereinfache jeden Term.
Schritt 1.1.1.5.2.1.1
Potenziere mit .
Schritt 1.1.1.5.2.1.2
Mutltipliziere mit .
Schritt 1.1.1.5.2.1.3
Dividiere durch .
Schritt 1.1.1.5.2.1.4
Mutltipliziere mit .
Schritt 1.1.1.5.2.2
Addiere und .
Schritt 1.1.1.6
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.1.2
Setze gleich der neuen rechten Seite.
Schritt 1.2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 1.3
Da der Wert von negativ ist, ist die Parabel nach unten geöffnet.
Öffnet nach unten
Schritt 1.4
Ermittle den Scheitelpunkt .
Schritt 1.5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Schritt 1.5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 1.5.2
Setze den Wert von in die Formel ein.
Schritt 1.5.3
Vereinfache.
Schritt 1.5.3.1
Mutltipliziere mit .
Schritt 1.5.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Ermittle den Brennpunkt.
Schritt 1.6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 1.6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 1.7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 1.8
Finde die Leitlinie.
Schritt 1.8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 1.8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 1.9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 2
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Addiere und .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.2.4
Subtrahiere von .
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.2.6
Die endgültige Lösung ist .
Schritt 2.3
Der -Wert bei ist .
Schritt 2.4
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.5
Vereinfache das Ergebnis.
Schritt 2.5.1
Entferne die Klammern.
Schritt 2.5.2
Addiere und .
Schritt 2.5.3
Mutltipliziere mit .
Schritt 2.5.4
Subtrahiere von .
Schritt 2.5.5
Mutltipliziere mit .
Schritt 2.5.6
Die endgültige Lösung ist .
Schritt 2.6
Der -Wert bei ist .
Schritt 2.7
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Schritt 3
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Richtung: Nach unten offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 4