Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
Schritt 1
Um die Wurzel auf der linken Seite der Ungleichung zu entfernen, quadriere beide Seiten der Ungleichung.
Schritt 2
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Multipliziere die Exponenten in .
Schritt 2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.2.1.2
Vereinfache.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Potenziere mit .
Schritt 3
Schritt 3.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 5
Schritt 5.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.1.3
Die linke Seite ist nicht gleich der rechten Seite, was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.2.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Falsch
Falsch
Falsch
Falsch
Falsch
Schritt 6
Da es kein Zahlen gibt, die in das Intervall fallen, hat die Ungleichung keine Lösung.
Keine Lösung
Schritt 7