Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 8
Schritt 8.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 8.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 8.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 8.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 8.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 8.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 8.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 8.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 8.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 8.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 8.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 8.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 8.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 9
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 10