Algebravorstufe Beispiele

Stelle graphisch dar (x-6)^2=9y
Schritt 1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe die Gleichung als um.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 2
Ermittle die Eigenschaften der gegebenen Parabel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle die Terme um.
Schritt 2.2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 2.3
Da der Wert von positiv ist, ist die Parabel nach oben geöffnet.
Öffnet nach Oben
Schritt 2.4
Ermittle den Scheitelpunkt .
Schritt 2.5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 2.5.2
Setze den Wert von in die Formel ein.
Schritt 2.5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.1
Kombiniere und .
Schritt 2.5.3.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5.3.3
Mutltipliziere mit .
Schritt 2.6
Ermittle den Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 2.6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 2.7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 2.8
Finde die Leitlinie.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 2.8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 2.9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 3
Wähle einige -Werte aus und setze sie in die Gleichung ein, um die entsprechenden -Werte zu ermitteln. Die -Werte sollten um den Scheitelpunkt herum gewählt werden.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Subtrahiere von .
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.2
Die endgültige Lösung ist .
Schritt 3.3
Der -Wert bei ist .
Schritt 3.4
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.5
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1
Subtrahiere von .
Schritt 3.5.1.2
Potenziere mit .
Schritt 3.5.2
Die endgültige Lösung ist .
Schritt 3.6
Der -Wert bei ist .
Schritt 3.7
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.8
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1.1
Subtrahiere von .
Schritt 3.8.1.2
Potenziere mit .
Schritt 3.8.2
Dividiere durch .
Schritt 3.8.3
Die endgültige Lösung ist .
Schritt 3.9
Der -Wert bei ist .
Schritt 3.10
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.11
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.11.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.11.1.1
Subtrahiere von .
Schritt 3.11.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.11.2
Die endgültige Lösung ist .
Schritt 3.12
Der -Wert bei ist .
Schritt 3.13
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Schritt 4
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 5