Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
Schritt 1
Schritt 1.1
Vereinfache durch Ausmultiplizieren.
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Stelle um.
Schritt 1.1.2.1
Bringe auf die linke Seite von .
Schritt 1.1.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.2.1
Bewege .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 3
Wandle die Ungleichung in eine Gleichung um.
Schritt 4
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 5
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 6
Schritt 6.1
Vereinfache den Zähler.
Schritt 6.1.1
Potenziere mit .
Schritt 6.1.2
Multipliziere .
Schritt 6.1.2.1
Mutltipliziere mit .
Schritt 6.1.2.2
Mutltipliziere mit .
Schritt 6.1.3
Subtrahiere von .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Vereinfache .
Schritt 7
Schritt 7.1
Vereinfache den Zähler.
Schritt 7.1.1
Potenziere mit .
Schritt 7.1.2
Multipliziere .
Schritt 7.1.2.1
Mutltipliziere mit .
Schritt 7.1.2.2
Mutltipliziere mit .
Schritt 7.1.3
Subtrahiere von .
Schritt 7.2
Mutltipliziere mit .
Schritt 7.3
Vereinfache .
Schritt 7.4
Ändere das zu .
Schritt 8
Schritt 8.1
Vereinfache den Zähler.
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Subtrahiere von .
Schritt 8.2
Mutltipliziere mit .
Schritt 8.3
Vereinfache .
Schritt 8.4
Ändere das zu .
Schritt 9
Fasse die Lösungen zusammen.
Schritt 10
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 11
Schritt 11.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.1.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 11.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 11.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 11.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 11.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 11.3.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 11.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 12
Die Lösung besteht aus allen wahren Intervallen.
Schritt 13