Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel (x)^2+(4x)^2=(9)^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende die Produktregel auf an.
Schritt 1.1.2
Potenziere mit .
Schritt 1.2
Addiere und .
Schritt 2
Potenziere mit .
Schritt 3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Schritt 5.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Schreibe als um.
Schritt 5.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Mutltipliziere mit .
Schritt 5.4.2
Potenziere mit .
Schritt 5.4.3
Potenziere mit .
Schritt 5.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.4.5
Addiere und .
Schritt 5.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.6.1
Benutze , um als neu zu schreiben.
Schritt 5.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.4.6.3
Kombiniere und .
Schritt 5.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.6.4.2
Forme den Ausdruck um.
Schritt 5.4.6.5
Berechne den Exponenten.
Schritt 6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: