Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel (8-x)^2=11
Schritt 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.3.2.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 2.3.3.1.2
Schreibe als um.
Schritt 2.3.3.1.3
Dividiere durch .
Schritt 2.4
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.6.2.2
Dividiere durch .
Schritt 2.6.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.6.3.1.2
Dividiere durch .
Schritt 2.6.3.1.3
Dividiere durch .
Schritt 2.7
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: