Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel (4x+1)(x-3)=9
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Wende das Distributivgesetz an.
Schritt 1.1.3
Wende das Distributivgesetz an.
Schritt 1.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1.1
Bewege .
Schritt 1.2.1.1.2
Mutltipliziere mit .
Schritt 1.2.1.2
Mutltipliziere mit .
Schritt 1.2.1.3
Mutltipliziere mit .
Schritt 1.2.1.4
Mutltipliziere mit .
Schritt 1.2.2
Addiere und .
Schritt 2
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Subtrahiere von .
Schritt 3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Mutltipliziere mit .
Schritt 5.1.2.2
Mutltipliziere mit .
Schritt 5.1.3
Addiere und .
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Potenziere mit .
Schritt 6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Mutltipliziere mit .
Schritt 6.1.2.2
Mutltipliziere mit .
Schritt 6.1.3
Addiere und .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Ändere das zu .
Schritt 7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Potenziere mit .
Schritt 7.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1
Mutltipliziere mit .
Schritt 7.1.2.2
Mutltipliziere mit .
Schritt 7.1.3
Addiere und .
Schritt 7.2
Mutltipliziere mit .
Schritt 7.3
Ändere das zu .
Schritt 8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: