Gib eine Aufgabe ein ...
Algebravorstufe Beispiele
,
Schritt 1
Use the dot product formula to find the angle between two vectors.
Schritt 2
Schritt 2.1
The dot product of two vectors is the sum of the products of the their components.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Mutltipliziere mit .
Schritt 2.2.1.2
Mutltipliziere mit .
Schritt 2.2.2
Subtrahiere von .
Schritt 3
Schritt 3.1
The norm is the square root of the sum of squares of each element in the vector.
Schritt 3.2
Vereinfache.
Schritt 3.2.1
Potenziere mit .
Schritt 3.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.3
Addiere und .
Schritt 4
Schritt 4.1
The norm is the square root of the sum of squares of each element in the vector.
Schritt 4.2
Vereinfache.
Schritt 4.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2
Potenziere mit .
Schritt 4.2.3
Addiere und .
Schritt 4.2.4
Jede Wurzel von ist .
Schritt 5
Setze die Werte in die Formel ein.
Schritt 6
Schritt 6.1
Kürze den gemeinsamen Teiler von und .
Schritt 6.1.1
Schreibe als um.
Schritt 6.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.3
Forme den Ausdruck um.
Schritt 6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Vereinige und vereinfache den Nenner.
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Potenziere mit .
Schritt 6.4.3
Potenziere mit .
Schritt 6.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.4.5
Addiere und .
Schritt 6.4.6
Schreibe als um.
Schritt 6.4.6.1
Benutze , um als neu zu schreiben.
Schritt 6.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.6.3
Kombiniere und .
Schritt 6.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.6.4.2
Forme den Ausdruck um.
Schritt 6.4.6.5
Berechne den Exponenten.
Schritt 6.5
Der genau Wert von ist .