Algebravorstufe Beispiele

Vereinfache (5x)/(2x^2+5x-3)-(2x)/(x^2+6x+9)
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Faktorisiere aus heraus.
Schritt 1.1.1.2
Schreibe um als plus
Schritt 1.1.1.3
Wende das Distributivgesetz an.
Schritt 1.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.2.3
Schreibe das Polynom neu.
Schritt 1.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Potenziere mit .
Schritt 4.3
Potenziere mit .
Schritt 4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5
Addiere und .
Schritt 4.6
Mutltipliziere mit .
Schritt 4.7
Stelle die Faktoren von um.
Schritt 5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Faktorisiere aus heraus.
Schritt 6.1.3
Faktorisiere aus heraus.
Schritt 6.2
Wende das Distributivgesetz an.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Wende das Distributivgesetz an.
Schritt 6.5
Mutltipliziere mit .
Schritt 6.6
Mutltipliziere mit .
Schritt 6.7
Subtrahiere von .
Schritt 6.8
Addiere und .