Algebravorstufe Beispiele

Ermittele die Exponentialfunktion (0.1,0.08)
Schritt 1
Um eine Exponentialfunktion, , zu ermitteln, die den Punkt enthält, setze in der Funktion gleich dem -Wert des Punktes und setze gleich dem -Wert des Punktes.
Schritt 2
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Wandle den dezimalen Exponenten in einen gebrochenen Exponenten um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wandle die Dezimalzahl in einen Bruch um, indem du die Dezimalen über einer Potenz von Zehn notierst. Da es Ziffer rechts vom Dezimaltrennzeichen gibt, notiere die Dezimale über . Als Nächstes addiere die ganze Zahl links von der Dezimalen.
Schritt 2.2.2
Wandle in einen unechten Bruch um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Eine gemischter Zahl ist die Summe seines ganzzahligen und seines gebrochenen Teils.
Schritt 2.2.2.2
Addiere und .
Schritt 2.3
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4
Vereinfache den Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.1.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.4.1.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.1.1.1.2.3
Forme den Ausdruck um.
Schritt 2.4.1.1.1.3
Dividiere durch .
Schritt 2.4.1.1.2
Vereinfache.
Schritt 2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Dividiere durch .
Schritt 2.4.2.1.2
Potenziere mit .
Schritt 3
Setze jeden Wert für erneut in die Funktion ein, um jede mögliche Exponentialfunktion zu ermitteln.