Algebravorstufe Beispiele

Addieren (4x+3)/x+24/(2x^2-8x)
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.3
Forme den Ausdruck um.
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Wende das Distributivgesetz an.
Schritt 4.1.2
Wende das Distributivgesetz an.
Schritt 4.1.3
Wende das Distributivgesetz an.
Schritt 4.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Bewege .
Schritt 4.2.1.1.2
Mutltipliziere mit .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.3
Addiere und .
Schritt 4.4
Addiere und .
Schritt 4.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Faktorisiere aus heraus.
Schritt 4.5.2
Faktorisiere aus heraus.
Schritt 4.5.3
Faktorisiere aus heraus.
Schritt 5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Faktor.
Schritt 5.2
Forme den Ausdruck um.