Lineare Algebra Beispiele

Löse die Matrixgleichung [[1,5],[0,8]][[X],[y]]=[[12],[6]]
Schritt 1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Schritt 1.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
Schritt 1.3
Vereinfache jedes Element der Matrix durch Ausmultiplizieren aller Ausdrücke.
Schritt 2
Write as a linear system of equations.
Schritt 3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.1
Faktorisiere aus heraus.
Schritt 3.1.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3.1.2.3
Forme den Ausdruck um.
Schritt 3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Ersetze alle in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kombiniere und .
Schritt 3.2.2.1.2
Mutltipliziere mit .
Schritt 3.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.3
Kombiniere und .
Schritt 3.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.1
Mutltipliziere mit .
Schritt 3.3.5.2
Subtrahiere von .
Schritt 3.4
Löse das Gleichungssystem.
Schritt 3.5
Liste alle Lösungen auf.