Lineare Algebra Beispiele

Bestimme die Kofaktormatrix [[2,1],[3,2]]
Schritt 1
Betrachte das entsprechende Vorzeichendiagramm.
Schritt 2
Verwende das Vorzeichendiagramm und die gegebene Matrix, um den Kofaktor für jedes Element zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne die Unterdeterminante für Element .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Die Unterdeterminante für ist die Determinante, wenn Zeile und Spalte eliminiert werden.
Schritt 2.1.2
Die Determinante einer -Matrix ist das Element selbst.
Schritt 2.2
Berechne die Unterdeterminante für Element .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Die Unterdeterminante für ist die Determinante, wenn Zeile und Spalte eliminiert werden.
Schritt 2.2.2
Die Determinante einer -Matrix ist das Element selbst.
Schritt 2.3
Berechne die Unterdeterminante für Element .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Die Unterdeterminante für ist die Determinante, wenn Zeile und Spalte eliminiert werden.
Schritt 2.3.2
Die Determinante einer -Matrix ist das Element selbst.
Schritt 2.4
Berechne die Unterdeterminante für Element .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Die Unterdeterminante für ist die Determinante, wenn Zeile und Spalte eliminiert werden.
Schritt 2.4.2
Die Determinante einer -Matrix ist das Element selbst.
Schritt 2.5
Die Kofaktormatrix ist eine Matrix der Unterdeterminanten mit verändertem Vorzeichen für die Elemente der -Positionen im Vorzeichendiagramm.