Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Stelle die Formel auf, um die charakteristische Gleichung zu ermitteln.
Schritt 2
Die Identitätsmatrix oder Einheitsmatrix der Größe ist die Quadratmatrix mit Einsen auf der Hauptdiagonalen und Nullen überall anders.
Schritt 3
Schritt 3.1
Ersetze durch .
Schritt 3.2
Ersetze durch .
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Multipliziere mit jedem Element der Matrix.
Schritt 4.1.2
Vereinfache jedes Element der Matrix.
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Multipliziere .
Schritt 4.1.2.2.1
Mutltipliziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Multipliziere .
Schritt 4.1.2.3.1
Mutltipliziere mit .
Schritt 4.1.2.3.2
Mutltipliziere mit .
Schritt 4.1.2.4
Multipliziere .
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.5
Multipliziere .
Schritt 4.1.2.5.1
Mutltipliziere mit .
Schritt 4.1.2.5.2
Mutltipliziere mit .
Schritt 4.1.2.6
Mutltipliziere mit .
Schritt 4.1.2.7
Multipliziere .
Schritt 4.1.2.7.1
Mutltipliziere mit .
Schritt 4.1.2.7.2
Mutltipliziere mit .
Schritt 4.1.2.8
Multipliziere .
Schritt 4.1.2.8.1
Mutltipliziere mit .
Schritt 4.1.2.8.2
Mutltipliziere mit .
Schritt 4.1.2.9
Multipliziere .
Schritt 4.1.2.9.1
Mutltipliziere mit .
Schritt 4.1.2.9.2
Mutltipliziere mit .
Schritt 4.1.2.10
Multipliziere .
Schritt 4.1.2.10.1
Mutltipliziere mit .
Schritt 4.1.2.10.2
Mutltipliziere mit .
Schritt 4.1.2.11
Mutltipliziere mit .
Schritt 4.1.2.12
Multipliziere .
Schritt 4.1.2.12.1
Mutltipliziere mit .
Schritt 4.1.2.12.2
Mutltipliziere mit .
Schritt 4.1.2.13
Multipliziere .
Schritt 4.1.2.13.1
Mutltipliziere mit .
Schritt 4.1.2.13.2
Mutltipliziere mit .
Schritt 4.1.2.14
Multipliziere .
Schritt 4.1.2.14.1
Mutltipliziere mit .
Schritt 4.1.2.14.2
Mutltipliziere mit .
Schritt 4.1.2.15
Multipliziere .
Schritt 4.1.2.15.1
Mutltipliziere mit .
Schritt 4.1.2.15.2
Mutltipliziere mit .
Schritt 4.1.2.16
Mutltipliziere mit .
Schritt 4.2
Addiere die entsprechenden Elemente.
Schritt 4.3
Simplify each element.
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Addiere und .
Schritt 4.3.4
Addiere und .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Addiere und .
Schritt 4.3.7
Addiere und .
Schritt 4.3.8
Addiere und .
Schritt 4.3.9
Addiere und .
Schritt 4.3.10
Addiere und .
Schritt 4.3.11
Addiere und .
Schritt 4.3.12
Addiere und .
Schritt 5
Schritt 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 5.1.1
Consider the corresponding sign chart.
Schritt 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.1.4
Multiply element by its cofactor.
Schritt 5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.1.6
Multiply element by its cofactor.
Schritt 5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.1.8
Multiply element by its cofactor.
Schritt 5.1.9
The minor for is the determinant with row and column deleted.
Schritt 5.1.10
Multiply element by its cofactor.
Schritt 5.1.11
Add the terms together.
Schritt 5.2
Berechne .
Schritt 5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 5.2.1.1
Consider the corresponding sign chart.
Schritt 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.2.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.2.1.4
Multiply element by its cofactor.
Schritt 5.2.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.2.1.6
Multiply element by its cofactor.
Schritt 5.2.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.2.1.8
Multiply element by its cofactor.
Schritt 5.2.1.9
Add the terms together.
Schritt 5.2.2
Berechne .
Schritt 5.2.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.2.2.2
Vereinfache die Determinante.
Schritt 5.2.2.2.1
Vereinfache jeden Term.
Schritt 5.2.2.2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 5.2.2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 5.2.2.2.1.1.2
Wende das Distributivgesetz an.
Schritt 5.2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 5.2.2.2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 5.2.2.2.1.2.1
Vereinfache jeden Term.
Schritt 5.2.2.2.1.2.1.1
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.1.2
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.1.3
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.2.2.2.1.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.2.2.2.1.2.1.5.1
Bewege .
Schritt 5.2.2.2.1.2.1.5.2
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.1.6
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.1.7
Mutltipliziere mit .
Schritt 5.2.2.2.1.2.2
Subtrahiere von .
Schritt 5.2.2.2.1.3
Mutltipliziere mit .
Schritt 5.2.2.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.2.2.2.1
Subtrahiere von .
Schritt 5.2.2.2.2.2
Addiere und .
Schritt 5.2.2.2.3
Stelle und um.
Schritt 5.2.3
Berechne .
Schritt 5.2.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.2.3.2
Vereinfache die Determinante.
Schritt 5.2.3.2.1
Vereinfache jeden Term.
Schritt 5.2.3.2.1.1
Wende das Distributivgesetz an.
Schritt 5.2.3.2.1.2
Mutltipliziere mit .
Schritt 5.2.3.2.1.3
Mutltipliziere mit .
Schritt 5.2.3.2.1.4
Mutltipliziere mit .
Schritt 5.2.3.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.3.2.2.1
Subtrahiere von .
Schritt 5.2.3.2.2.2
Addiere und .
Schritt 5.2.4
Berechne .
Schritt 5.2.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.2.4.2
Vereinfache die Determinante.
Schritt 5.2.4.2.1
Vereinfache jeden Term.
Schritt 5.2.4.2.1.1
Mutltipliziere mit .
Schritt 5.2.4.2.1.2
Wende das Distributivgesetz an.
Schritt 5.2.4.2.1.3
Mutltipliziere mit .
Schritt 5.2.4.2.1.4
Mutltipliziere mit .
Schritt 5.2.4.2.2
Subtrahiere von .
Schritt 5.2.4.2.3
Addiere und .
Schritt 5.2.5
Vereinfache die Determinante.
Schritt 5.2.5.1
Vereinfache jeden Term.
Schritt 5.2.5.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 5.2.5.1.1.1
Wende das Distributivgesetz an.
Schritt 5.2.5.1.1.2
Wende das Distributivgesetz an.
Schritt 5.2.5.1.1.3
Wende das Distributivgesetz an.
Schritt 5.2.5.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 5.2.5.1.2.1
Vereinfache jeden Term.
Schritt 5.2.5.1.2.1.1
Mutltipliziere mit .
Schritt 5.2.5.1.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.2.5.1.2.1.2.1
Bewege .
Schritt 5.2.5.1.2.1.2.2
Mutltipliziere mit .
Schritt 5.2.5.1.2.1.2.2.1
Potenziere mit .
Schritt 5.2.5.1.2.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.5.1.2.1.2.3
Addiere und .
Schritt 5.2.5.1.2.1.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.2.5.1.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.2.5.1.2.1.4.1
Bewege .
Schritt 5.2.5.1.2.1.4.2
Mutltipliziere mit .
Schritt 5.2.5.1.2.1.5
Mutltipliziere mit .
Schritt 5.2.5.1.2.2
Addiere und .
Schritt 5.2.5.1.3
Mutltipliziere mit .
Schritt 5.2.5.1.4
Mutltipliziere mit .
Schritt 5.2.5.2
Addiere und .
Schritt 5.2.5.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.5.3.1
Addiere und .
Schritt 5.2.5.3.2
Addiere und .
Schritt 5.2.5.4
Stelle und um.
Schritt 5.3
Berechne .
Schritt 5.3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 5.3.1.1
Consider the corresponding sign chart.
Schritt 5.3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.3.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.3.1.4
Multiply element by its cofactor.
Schritt 5.3.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.3.1.6
Multiply element by its cofactor.
Schritt 5.3.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.3.1.8
Multiply element by its cofactor.
Schritt 5.3.1.9
Add the terms together.
Schritt 5.3.2
Berechne .
Schritt 5.3.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.3.2.2
Vereinfache die Determinante.
Schritt 5.3.2.2.1
Vereinfache jeden Term.
Schritt 5.3.2.2.1.1
Wende das Distributivgesetz an.
Schritt 5.3.2.2.1.2
Mutltipliziere mit .
Schritt 5.3.2.2.1.3
Mutltipliziere mit .
Schritt 5.3.2.2.1.4
Mutltipliziere mit .
Schritt 5.3.2.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.2.2.2.1
Subtrahiere von .
Schritt 5.3.2.2.2.2
Addiere und .
Schritt 5.3.3
Berechne .
Schritt 5.3.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.3.3.2
Vereinfache die Determinante.
Schritt 5.3.3.2.1
Vereinfache jeden Term.
Schritt 5.3.3.2.1.1
Wende das Distributivgesetz an.
Schritt 5.3.3.2.1.2
Mutltipliziere mit .
Schritt 5.3.3.2.1.3
Mutltipliziere mit .
Schritt 5.3.3.2.1.4
Mutltipliziere mit .
Schritt 5.3.3.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.3.2.2.1
Subtrahiere von .
Schritt 5.3.3.2.2.2
Addiere und .
Schritt 5.3.4
Berechne .
Schritt 5.3.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.3.4.2
Vereinfache die Determinante.
Schritt 5.3.4.2.1
Vereinfache jeden Term.
Schritt 5.3.4.2.1.1
Mutltipliziere mit .
Schritt 5.3.4.2.1.2
Mutltipliziere mit .
Schritt 5.3.4.2.2
Subtrahiere von .
Schritt 5.3.5
Vereinfache die Determinante.
Schritt 5.3.5.1
Vereinfache jeden Term.
Schritt 5.3.5.1.1
Mutltipliziere mit .
Schritt 5.3.5.1.2
Wende das Distributivgesetz an.
Schritt 5.3.5.1.3
Mutltipliziere mit .
Schritt 5.3.5.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.5.1.5
Vereinfache jeden Term.
Schritt 5.3.5.1.5.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.3.5.1.5.1.1
Bewege .
Schritt 5.3.5.1.5.1.2
Mutltipliziere mit .
Schritt 5.3.5.1.5.2
Mutltipliziere mit .
Schritt 5.3.5.1.6
Mutltipliziere mit .
Schritt 5.3.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.5.2.1
Addiere und .
Schritt 5.3.5.2.2
Subtrahiere von .
Schritt 5.3.5.3
Addiere und .
Schritt 5.4
Berechne .
Schritt 5.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 5.4.1.1
Consider the corresponding sign chart.
Schritt 5.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.4.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.4.1.4
Multiply element by its cofactor.
Schritt 5.4.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.4.1.6
Multiply element by its cofactor.
Schritt 5.4.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.4.1.8
Multiply element by its cofactor.
Schritt 5.4.1.9
Add the terms together.
Schritt 5.4.2
Berechne .
Schritt 5.4.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.4.2.2
Vereinfache die Determinante.
Schritt 5.4.2.2.1
Vereinfache jeden Term.
Schritt 5.4.2.2.1.1
Wende das Distributivgesetz an.
Schritt 5.4.2.2.1.2
Mutltipliziere mit .
Schritt 5.4.2.2.1.3
Mutltipliziere mit .
Schritt 5.4.2.2.1.4
Mutltipliziere mit .
Schritt 5.4.2.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.4.2.2.2.1
Subtrahiere von .
Schritt 5.4.2.2.2.2
Addiere und .
Schritt 5.4.3
Berechne .
Schritt 5.4.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.4.3.2
Vereinfache die Determinante.
Schritt 5.4.3.2.1
Vereinfache jeden Term.
Schritt 5.4.3.2.1.1
Wende das Distributivgesetz an.
Schritt 5.4.3.2.1.2
Mutltipliziere mit .
Schritt 5.4.3.2.1.3
Mutltipliziere mit .
Schritt 5.4.3.2.1.4
Mutltipliziere mit .
Schritt 5.4.3.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.4.3.2.2.1
Subtrahiere von .
Schritt 5.4.3.2.2.2
Addiere und .
Schritt 5.4.4
Berechne .
Schritt 5.4.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.4.4.2
Vereinfache die Determinante.
Schritt 5.4.4.2.1
Vereinfache jeden Term.
Schritt 5.4.4.2.1.1
Mutltipliziere mit .
Schritt 5.4.4.2.1.2
Mutltipliziere mit .
Schritt 5.4.4.2.2
Subtrahiere von .
Schritt 5.4.5
Vereinfache die Determinante.
Schritt 5.4.5.1
Vereinfache jeden Term.
Schritt 5.4.5.1.1
Mutltipliziere mit .
Schritt 5.4.5.1.2
Wende das Distributivgesetz an.
Schritt 5.4.5.1.3
Mutltipliziere mit .
Schritt 5.4.5.1.4
Multipliziere .
Schritt 5.4.5.1.4.1
Mutltipliziere mit .
Schritt 5.4.5.1.4.2
Mutltipliziere mit .
Schritt 5.4.5.1.5
Wende das Distributivgesetz an.
Schritt 5.4.5.1.6
Mutltipliziere mit .
Schritt 5.4.5.1.7
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.4.5.1.8
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.4.5.1.8.1
Bewege .
Schritt 5.4.5.1.8.2
Mutltipliziere mit .
Schritt 5.4.5.1.9
Mutltipliziere mit .
Schritt 5.4.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.4.5.2.1
Addiere und .
Schritt 5.4.5.2.2
Addiere und .
Schritt 5.4.5.3
Subtrahiere von .
Schritt 5.5
Berechne .
Schritt 5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Schritt 5.5.1.1
Consider the corresponding sign chart.
Schritt 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.4
Multiply element by its cofactor.
Schritt 5.5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.6
Multiply element by its cofactor.
Schritt 5.5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.8
Multiply element by its cofactor.
Schritt 5.5.1.9
Add the terms together.
Schritt 5.5.2
Berechne .
Schritt 5.5.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.5.2.2
Vereinfache die Determinante.
Schritt 5.5.2.2.1
Vereinfache jeden Term.
Schritt 5.5.2.2.1.1
Mutltipliziere mit .
Schritt 5.5.2.2.1.2
Wende das Distributivgesetz an.
Schritt 5.5.2.2.1.3
Mutltipliziere mit .
Schritt 5.5.2.2.1.4
Mutltipliziere mit .
Schritt 5.5.2.2.2
Subtrahiere von .
Schritt 5.5.2.2.3
Addiere und .
Schritt 5.5.3
Berechne .
Schritt 5.5.3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.5.3.2
Vereinfache die Determinante.
Schritt 5.5.3.2.1
Vereinfache jeden Term.
Schritt 5.5.3.2.1.1
Mutltipliziere mit .
Schritt 5.5.3.2.1.2
Wende das Distributivgesetz an.
Schritt 5.5.3.2.1.3
Mutltipliziere mit .
Schritt 5.5.3.2.1.4
Mutltipliziere mit .
Schritt 5.5.3.2.2
Subtrahiere von .
Schritt 5.5.3.2.3
Addiere und .
Schritt 5.5.4
Berechne .
Schritt 5.5.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.5.4.2
Vereinfache die Determinante.
Schritt 5.5.4.2.1
Vereinfache jeden Term.
Schritt 5.5.4.2.1.1
Mutltipliziere mit .
Schritt 5.5.4.2.1.2
Mutltipliziere mit .
Schritt 5.5.4.2.2
Subtrahiere von .
Schritt 5.5.5
Vereinfache die Determinante.
Schritt 5.5.5.1
Vereinfache jeden Term.
Schritt 5.5.5.1.1
Mutltipliziere mit .
Schritt 5.5.5.1.2
Wende das Distributivgesetz an.
Schritt 5.5.5.1.3
Mutltipliziere mit .
Schritt 5.5.5.1.4
Multipliziere .
Schritt 5.5.5.1.4.1
Mutltipliziere mit .
Schritt 5.5.5.1.4.2
Mutltipliziere mit .
Schritt 5.5.5.1.5
Wende das Distributivgesetz an.
Schritt 5.5.5.1.6
Mutltipliziere mit .
Schritt 5.5.5.1.7
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.5.1.8
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.5.5.1.8.1
Bewege .
Schritt 5.5.5.1.8.2
Mutltipliziere mit .
Schritt 5.5.5.1.9
Mutltipliziere mit .
Schritt 5.5.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.5.5.2.1
Addiere und .
Schritt 5.5.5.2.2
Subtrahiere von .
Schritt 5.5.5.3
Addiere und .
Schritt 5.6
Vereinfache die Determinante.
Schritt 5.6.1
Vereinfache jeden Term.
Schritt 5.6.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 5.6.1.1.1
Wende das Distributivgesetz an.
Schritt 5.6.1.1.2
Wende das Distributivgesetz an.
Schritt 5.6.1.1.3
Wende das Distributivgesetz an.
Schritt 5.6.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 5.6.1.2.1
Vereinfache jeden Term.
Schritt 5.6.1.2.1.1
Mutltipliziere mit .
Schritt 5.6.1.2.1.2
Mutltipliziere mit .
Schritt 5.6.1.2.1.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.1.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.6.1.2.1.4.1
Bewege .
Schritt 5.6.1.2.1.4.2
Mutltipliziere mit .
Schritt 5.6.1.2.1.4.2.1
Potenziere mit .
Schritt 5.6.1.2.1.4.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.1.2.1.4.3
Addiere und .
Schritt 5.6.1.2.1.5
Mutltipliziere mit .
Schritt 5.6.1.2.1.6
Mutltipliziere mit .
Schritt 5.6.1.2.1.7
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.1.2.1.8
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.6.1.2.1.8.1
Bewege .
Schritt 5.6.1.2.1.8.2
Mutltipliziere mit .
Schritt 5.6.1.2.1.8.2.1
Potenziere mit .
Schritt 5.6.1.2.1.8.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.1.2.1.8.3
Addiere und .
Schritt 5.6.1.2.1.9
Mutltipliziere mit .
Schritt 5.6.1.2.2
Subtrahiere von .
Schritt 5.6.1.3
Mutltipliziere mit .
Schritt 5.6.1.4
Mutltipliziere mit .
Schritt 5.6.1.5
Mutltipliziere mit .
Schritt 5.6.2
Subtrahiere von .
Schritt 5.6.3
Subtrahiere von .
Schritt 5.6.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.6.4.1
Subtrahiere von .
Schritt 5.6.4.2
Addiere und .
Schritt 5.6.5
Stelle und um.
Schritt 6
Setze das charakteristische Polynom gleich , um die Eigenwerte zu ermitteln.
Schritt 7
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.1.1
Faktorisiere aus heraus.
Schritt 7.1.2
Faktorisiere aus heraus.
Schritt 7.1.3
Faktorisiere aus heraus.
Schritt 7.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 7.3
Setze gleich und löse nach auf.
Schritt 7.3.1
Setze gleich .
Schritt 7.3.2
Löse nach auf.
Schritt 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 7.3.2.2
Vereinfache .
Schritt 7.3.2.2.1
Schreibe als um.
Schritt 7.3.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 7.4
Setze gleich und löse nach auf.
Schritt 7.4.1
Setze gleich .
Schritt 7.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7.5
Die endgültige Lösung sind alle Werte, die wahr machen.