Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Stelle die Formel auf, um die charakteristische Gleichung zu ermitteln.
Schritt 2
Die Identitätsmatrix oder Einheitsmatrix der Größe ist die Quadratmatrix mit Einsen auf der Hauptdiagonalen und Nullen überall anders.
Schritt 3
Schritt 3.1
Ersetze durch .
Schritt 3.2
Ersetze durch .
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Multipliziere mit jedem Element der Matrix.
Schritt 4.1.2
Vereinfache jedes Element der Matrix.
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Multipliziere .
Schritt 4.1.2.2.1
Mutltipliziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Multipliziere .
Schritt 4.1.2.3.1
Mutltipliziere mit .
Schritt 4.1.2.3.2
Mutltipliziere mit .
Schritt 4.1.2.4
Multipliziere .
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.5
Multipliziere .
Schritt 4.1.2.5.1
Mutltipliziere mit .
Schritt 4.1.2.5.2
Mutltipliziere mit .
Schritt 4.1.2.6
Mutltipliziere mit .
Schritt 4.1.2.7
Multipliziere .
Schritt 4.1.2.7.1
Mutltipliziere mit .
Schritt 4.1.2.7.2
Mutltipliziere mit .
Schritt 4.1.2.8
Multipliziere .
Schritt 4.1.2.8.1
Mutltipliziere mit .
Schritt 4.1.2.8.2
Mutltipliziere mit .
Schritt 4.1.2.9
Multipliziere .
Schritt 4.1.2.9.1
Mutltipliziere mit .
Schritt 4.1.2.9.2
Mutltipliziere mit .
Schritt 4.1.2.10
Multipliziere .
Schritt 4.1.2.10.1
Mutltipliziere mit .
Schritt 4.1.2.10.2
Mutltipliziere mit .
Schritt 4.1.2.11
Mutltipliziere mit .
Schritt 4.1.2.12
Multipliziere .
Schritt 4.1.2.12.1
Mutltipliziere mit .
Schritt 4.1.2.12.2
Mutltipliziere mit .
Schritt 4.1.2.13
Multipliziere .
Schritt 4.1.2.13.1
Mutltipliziere mit .
Schritt 4.1.2.13.2
Mutltipliziere mit .
Schritt 4.1.2.14
Multipliziere .
Schritt 4.1.2.14.1
Mutltipliziere mit .
Schritt 4.1.2.14.2
Mutltipliziere mit .
Schritt 4.1.2.15
Multipliziere .
Schritt 4.1.2.15.1
Mutltipliziere mit .
Schritt 4.1.2.15.2
Mutltipliziere mit .
Schritt 4.1.2.16
Mutltipliziere mit .
Schritt 4.2
Addiere die entsprechenden Elemente.
Schritt 4.3
Simplify each element.
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Addiere und .
Schritt 4.3.4
Addiere und .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Addiere und .
Schritt 4.3.7
Addiere und .
Schritt 4.3.8
Addiere und .
Schritt 4.3.9
Addiere und .
Schritt 4.3.10
Addiere und .
Schritt 4.3.11
Addiere und .
Schritt 4.3.12
Addiere und .
Schritt 5
Schritt 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Schritt 5.1.1
Consider the corresponding sign chart.
Schritt 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.1.4
Multiply element by its cofactor.
Schritt 5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.1.6
Multiply element by its cofactor.
Schritt 5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.1.8
Multiply element by its cofactor.
Schritt 5.1.9
The minor for is the determinant with row and column deleted.
Schritt 5.1.10
Multiply element by its cofactor.
Schritt 5.1.11
Add the terms together.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Berechne .
Schritt 5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Schritt 5.5.1.1
Consider the corresponding sign chart.
Schritt 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.4
Multiply element by its cofactor.
Schritt 5.5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.6
Multiply element by its cofactor.
Schritt 5.5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.8
Multiply element by its cofactor.
Schritt 5.5.1.9
Add the terms together.
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.5.3
Mutltipliziere mit .
Schritt 5.5.4
Berechne .
Schritt 5.5.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.5.4.2
Vereinfache die Determinante.
Schritt 5.5.4.2.1
Vereinfache jeden Term.
Schritt 5.5.4.2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 5.5.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.1.2
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.1.3
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 5.5.4.2.1.2.1
Vereinfache jeden Term.
Schritt 5.5.4.2.1.2.1.1
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.2
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.3
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.4.2.1.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.5.4.2.1.2.1.5.1
Bewege .
Schritt 5.5.4.2.1.2.1.5.2
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.6
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.7
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.2
Subtrahiere von .
Schritt 5.5.4.2.1.3
Mutltipliziere mit .
Schritt 5.5.4.2.2
Addiere und .
Schritt 5.5.4.2.3
Bewege .
Schritt 5.5.4.2.4
Stelle und um.
Schritt 5.5.5
Vereinfache die Determinante.
Schritt 5.5.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.5.5.1.1
Addiere und .
Schritt 5.5.5.1.2
Addiere und .
Schritt 5.5.5.2
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 5.5.5.3
Vereinfache jeden Term.
Schritt 5.5.5.3.1
Mutltipliziere mit .
Schritt 5.5.5.3.2
Mutltipliziere mit .
Schritt 5.5.5.3.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.5.5.3.3.1
Bewege .
Schritt 5.5.5.3.3.2
Mutltipliziere mit .
Schritt 5.5.5.3.3.2.1
Potenziere mit .
Schritt 5.5.5.3.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.5.5.3.3.3
Addiere und .
Schritt 5.5.5.3.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.5.3.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.5.5.3.5.1
Bewege .
Schritt 5.5.5.3.5.2
Mutltipliziere mit .
Schritt 5.5.5.3.6
Mutltipliziere mit .
Schritt 5.5.5.3.7
Mutltipliziere mit .
Schritt 5.5.5.4
Addiere und .
Schritt 5.5.5.5
Subtrahiere von .
Schritt 5.5.5.6
Bewege .
Schritt 5.5.5.7
Bewege .
Schritt 5.5.5.8
Stelle und um.
Schritt 5.6
Vereinfache die Determinante.
Schritt 5.6.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.6.1.1
Addiere und .
Schritt 5.6.1.2
Addiere und .
Schritt 5.6.1.3
Addiere und .
Schritt 5.6.2
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 5.6.3
Vereinfache jeden Term.
Schritt 5.6.3.1
Mutltipliziere mit .
Schritt 5.6.3.2
Mutltipliziere mit .
Schritt 5.6.3.3
Mutltipliziere mit .
Schritt 5.6.3.4
Mutltipliziere mit .
Schritt 5.6.3.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.6.3.6.1
Bewege .
Schritt 5.6.3.6.2
Mutltipliziere mit .
Schritt 5.6.3.6.2.1
Potenziere mit .
Schritt 5.6.3.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.3.6.3
Addiere und .
Schritt 5.6.3.7
Mutltipliziere mit .
Schritt 5.6.3.8
Mutltipliziere mit .
Schritt 5.6.3.9
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.10
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.6.3.10.1
Bewege .
Schritt 5.6.3.10.2
Mutltipliziere mit .
Schritt 5.6.3.10.2.1
Potenziere mit .
Schritt 5.6.3.10.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.3.10.3
Addiere und .
Schritt 5.6.3.11
Mutltipliziere mit .
Schritt 5.6.3.12
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.6.3.13.1
Bewege .
Schritt 5.6.3.13.2
Mutltipliziere mit .
Schritt 5.6.3.14
Mutltipliziere mit .
Schritt 5.6.3.15
Mutltipliziere mit .
Schritt 5.6.4
Subtrahiere von .
Schritt 5.6.5
Addiere und .
Schritt 5.6.6
Subtrahiere von .
Schritt 5.6.7
Bewege .
Schritt 5.6.8
Bewege .
Schritt 5.6.9
Bewege .
Schritt 5.6.10
Stelle und um.
Schritt 6
Setze das charakteristische Polynom gleich , um die Eigenwerte zu ermitteln.
Schritt 7
Schritt 7.1
Faktorisiere die linke Seite der Gleichung.
Schritt 7.1.1
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Schritt 7.1.1.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 7.1.1.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 7.1.1.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Schritt 7.1.1.3.1
Setze in das Polynom ein.
Schritt 7.1.1.3.2
Potenziere mit .
Schritt 7.1.1.3.3
Potenziere mit .
Schritt 7.1.1.3.4
Mutltipliziere mit .
Schritt 7.1.1.3.5
Subtrahiere von .
Schritt 7.1.1.3.6
Potenziere mit .
Schritt 7.1.1.3.7
Mutltipliziere mit .
Schritt 7.1.1.3.8
Addiere und .
Schritt 7.1.1.3.9
Mutltipliziere mit .
Schritt 7.1.1.3.10
Subtrahiere von .
Schritt 7.1.1.3.11
Addiere und .
Schritt 7.1.1.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 7.1.1.5
Dividiere durch .
Schritt 7.1.1.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
- | - | + | - | + |
Schritt 7.1.1.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | - | + | - | + |
Schritt 7.1.1.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
- | - | + | - | + | |||||||||
+ | - |
Schritt 7.1.1.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | - | + | - | + | |||||||||
- | + |
Schritt 7.1.1.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- |
Schritt 7.1.1.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Schritt 7.1.1.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ |
Schritt 7.1.1.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Schritt 7.1.1.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Schritt 7.1.1.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
+ | - |
Schritt 7.1.1.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + |
Schritt 7.1.1.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- |
Schritt 7.1.1.5.16
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.17
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.18
Multipliziere den neuen Bruchterm mit dem Teiler.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Schritt 7.1.1.5.19
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Schritt 7.1.1.5.20
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
Schritt 7.1.1.5.21
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 7.1.1.6
Schreibe als eine Menge von Faktoren.
Schritt 7.1.2
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Schritt 7.1.2.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 7.1.2.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 7.1.2.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Schritt 7.1.2.3.1
Setze in das Polynom ein.
Schritt 7.1.2.3.2
Potenziere mit .
Schritt 7.1.2.3.3
Potenziere mit .
Schritt 7.1.2.3.4
Mutltipliziere mit .
Schritt 7.1.2.3.5
Subtrahiere von .
Schritt 7.1.2.3.6
Mutltipliziere mit .
Schritt 7.1.2.3.7
Addiere und .
Schritt 7.1.2.3.8
Subtrahiere von .
Schritt 7.1.2.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 7.1.2.5
Dividiere durch .
Schritt 7.1.2.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
- | - | + | - |
Schritt 7.1.2.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | - | + | - |
Schritt 7.1.2.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
- | - | + | - | ||||||||
+ | - |
Schritt 7.1.2.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | - | + | - | ||||||||
- | + |
Schritt 7.1.2.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Schritt 7.1.2.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Schritt 7.1.2.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Schritt 7.1.2.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Schritt 7.1.2.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Schritt 7.1.2.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Schritt 7.1.2.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 7.1.2.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 7.1.2.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 7.1.2.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Schritt 7.1.2.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Schritt 7.1.2.5.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 7.1.2.6
Schreibe als eine Menge von Faktoren.
Schritt 7.1.3
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 7.1.3.1
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 7.1.3.1.1
Schreibe als um.
Schritt 7.1.3.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 7.1.3.1.3
Schreibe das Polynom neu.
Schritt 7.1.3.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 7.1.3.2
Entferne unnötige Klammern.
Schritt 7.1.4
Fasse gleichartig Faktoren zusammen.
Schritt 7.1.4.1
Potenziere mit .
Schritt 7.1.4.2
Potenziere mit .
Schritt 7.1.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.1.4.4
Addiere und .
Schritt 7.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 7.3
Setze gleich und löse nach auf.
Schritt 7.3.1
Setze gleich .
Schritt 7.3.2
Löse nach auf.
Schritt 7.3.2.1
Setze gleich .
Schritt 7.3.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7.4
Setze gleich und löse nach auf.
Schritt 7.4.1
Setze gleich .
Schritt 7.4.2
Löse nach auf.
Schritt 7.4.2.1
Setze gleich .
Schritt 7.4.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7.5
Die endgültige Lösung sind alle Werte, die wahr machen.