Lineare Algebra Beispiele

Bestimme die Eigenwerte [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
Schritt 1
Stelle die Formel auf, um die charakteristische Gleichung zu ermitteln.
Schritt 2
Die Identitätsmatrix oder Einheitsmatrix der Größe ist die Quadratmatrix mit Einsen auf der Hauptdiagonalen und Nullen überall anders.
Schritt 3
Setze die bekannten Werte in ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze durch .
Schritt 3.2
Ersetze durch .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Multipliziere mit jedem Element der Matrix.
Schritt 4.1.2
Vereinfache jedes Element der Matrix.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Mutltipliziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.3.1
Mutltipliziere mit .
Schritt 4.1.2.3.2
Mutltipliziere mit .
Schritt 4.1.2.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.5.1
Mutltipliziere mit .
Schritt 4.1.2.5.2
Mutltipliziere mit .
Schritt 4.1.2.6
Mutltipliziere mit .
Schritt 4.1.2.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.7.1
Mutltipliziere mit .
Schritt 4.1.2.7.2
Mutltipliziere mit .
Schritt 4.1.2.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.8.1
Mutltipliziere mit .
Schritt 4.1.2.8.2
Mutltipliziere mit .
Schritt 4.1.2.9
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.9.1
Mutltipliziere mit .
Schritt 4.1.2.9.2
Mutltipliziere mit .
Schritt 4.1.2.10
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.10.1
Mutltipliziere mit .
Schritt 4.1.2.10.2
Mutltipliziere mit .
Schritt 4.1.2.11
Mutltipliziere mit .
Schritt 4.1.2.12
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.12.1
Mutltipliziere mit .
Schritt 4.1.2.12.2
Mutltipliziere mit .
Schritt 4.1.2.13
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.13.1
Mutltipliziere mit .
Schritt 4.1.2.13.2
Mutltipliziere mit .
Schritt 4.1.2.14
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.14.1
Mutltipliziere mit .
Schritt 4.1.2.14.2
Mutltipliziere mit .
Schritt 4.1.2.15
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.15.1
Mutltipliziere mit .
Schritt 4.1.2.15.2
Mutltipliziere mit .
Schritt 4.1.2.16
Mutltipliziere mit .
Schritt 4.2
Addiere die entsprechenden Elemente.
Schritt 4.3
Simplify each element.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Addiere und .
Schritt 4.3.4
Addiere und .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Addiere und .
Schritt 4.3.7
Addiere und .
Schritt 4.3.8
Addiere und .
Schritt 4.3.9
Addiere und .
Schritt 4.3.10
Addiere und .
Schritt 4.3.11
Addiere und .
Schritt 4.3.12
Addiere und .
Schritt 5
Find the determinant.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Consider the corresponding sign chart.
Schritt 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.1.4
Multiply element by its cofactor.
Schritt 5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.1.6
Multiply element by its cofactor.
Schritt 5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.1.8
Multiply element by its cofactor.
Schritt 5.1.9
The minor for is the determinant with row and column deleted.
Schritt 5.1.10
Multiply element by its cofactor.
Schritt 5.1.11
Add the terms together.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.1
Consider the corresponding sign chart.
Schritt 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.4
Multiply element by its cofactor.
Schritt 5.5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.6
Multiply element by its cofactor.
Schritt 5.5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.5.1.8
Multiply element by its cofactor.
Schritt 5.5.1.9
Add the terms together.
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.5.3
Mutltipliziere mit .
Schritt 5.5.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.5.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.1.2
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.1.3
Wende das Distributivgesetz an.
Schritt 5.5.4.2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1.2.1.1
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.2
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.3
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.4.2.1.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.4.2.1.2.1.5.1
Bewege .
Schritt 5.5.4.2.1.2.1.5.2
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.6
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.1.7
Mutltipliziere mit .
Schritt 5.5.4.2.1.2.2
Subtrahiere von .
Schritt 5.5.4.2.1.3
Mutltipliziere mit .
Schritt 5.5.4.2.2
Addiere und .
Schritt 5.5.4.2.3
Bewege .
Schritt 5.5.4.2.4
Stelle und um.
Schritt 5.5.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.1.1
Addiere und .
Schritt 5.5.5.1.2
Addiere und .
Schritt 5.5.5.2
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 5.5.5.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.3.1
Mutltipliziere mit .
Schritt 5.5.5.3.2
Mutltipliziere mit .
Schritt 5.5.5.3.3
Mutltipliziere mit .
Schritt 5.5.5.3.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.3.4.1
Bewege .
Schritt 5.5.5.3.4.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.3.4.2.1
Potenziere mit .
Schritt 5.5.5.3.4.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.5.5.3.4.3
Addiere und .
Schritt 5.5.5.3.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.5.3.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.5.3.6.1
Bewege .
Schritt 5.5.5.3.6.2
Mutltipliziere mit .
Schritt 5.5.5.3.7
Mutltipliziere mit .
Schritt 5.5.5.3.8
Mutltipliziere mit .
Schritt 5.5.5.4
Addiere und .
Schritt 5.5.5.5
Subtrahiere von .
Schritt 5.5.5.6
Bewege .
Schritt 5.5.5.7
Bewege .
Schritt 5.5.5.8
Stelle und um.
Schritt 5.6
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1.1
Addiere und .
Schritt 5.6.1.2
Addiere und .
Schritt 5.6.1.3
Addiere und .
Schritt 5.6.2
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 5.6.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.1
Mutltipliziere mit .
Schritt 5.6.3.2
Mutltipliziere mit .
Schritt 5.6.3.3
Mutltipliziere mit .
Schritt 5.6.3.4
Mutltipliziere mit .
Schritt 5.6.3.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.6.1
Bewege .
Schritt 5.6.3.6.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.6.2.1
Potenziere mit .
Schritt 5.6.3.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.3.6.3
Addiere und .
Schritt 5.6.3.7
Mutltipliziere mit .
Schritt 5.6.3.8
Mutltipliziere mit .
Schritt 5.6.3.9
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.10
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.10.1
Bewege .
Schritt 5.6.3.10.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.10.2.1
Potenziere mit .
Schritt 5.6.3.10.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.6.3.10.3
Addiere und .
Schritt 5.6.3.11
Mutltipliziere mit .
Schritt 5.6.3.12
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6.3.13
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.3.13.1
Bewege .
Schritt 5.6.3.13.2
Mutltipliziere mit .
Schritt 5.6.3.14
Mutltipliziere mit .
Schritt 5.6.3.15
Mutltipliziere mit .
Schritt 5.6.4
Subtrahiere von .
Schritt 5.6.5
Addiere und .
Schritt 5.6.6
Subtrahiere von .
Schritt 5.6.7
Bewege .
Schritt 5.6.8
Bewege .
Schritt 5.6.9
Bewege .
Schritt 5.6.10
Stelle und um.
Schritt 6
Setze das charakteristische Polynom gleich , um die Eigenwerte zu ermitteln.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere mithilfe des Binomischen Lehrsatzes.
Schritt 7.2
Setze gleich .
Schritt 7.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 7.3.2.2.2
Dividiere durch .
Schritt 7.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.3.1
Dividiere durch .