Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Schritt 1.1
Wende das Distributivgesetz an.
Schritt 1.2
Wende das Distributivgesetz an.
Schritt 1.3
Wende das Distributivgesetz an.
Schritt 2
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.1.1
Mutltipliziere mit .
Schritt 2.1.2
Mutltipliziere mit .
Schritt 2.1.3
Mutltipliziere mit .
Schritt 2.1.4
Multipliziere .
Schritt 2.1.4.1
Mutltipliziere mit .
Schritt 2.1.4.2
Potenziere mit .
Schritt 2.1.4.3
Potenziere mit .
Schritt 2.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.4.5
Addiere und .
Schritt 2.1.5
Schreibe als um.
Schritt 2.1.6
Mutltipliziere mit .
Schritt 2.2
Addiere und .
Schritt 2.3
Subtrahiere von .
Schritt 3
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 4
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 5
Ersetze die tatsächlichen Werte von und .
Schritt 6
Schritt 6.1
Potenziere mit .
Schritt 6.2
Potenziere mit .
Schritt 6.3
Addiere und .
Schritt 7
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 8
Da die Umkehrfunktion des Tangens von einen Winkel im ersten Quadranten ergibt, ist der Wert des Winkels .
Schritt 9
Substituiere die Werte von und .