Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Vereinfache den Zähler.
Schritt 2.4.1.1
Potenziere mit .
Schritt 2.4.1.2
Multipliziere .
Schritt 2.4.1.2.1
Mutltipliziere mit .
Schritt 2.4.1.2.2
Mutltipliziere mit .
Schritt 2.4.1.3
Subtrahiere von .
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.5.1
Vereinfache den Zähler.
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Multipliziere .
Schritt 2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.1.3
Subtrahiere von .
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.5.3
Ändere das zu .
Schritt 2.5.4
Schreibe als um.
Schritt 2.5.5
Faktorisiere aus heraus.
Schritt 2.5.6
Faktorisiere aus heraus.
Schritt 2.5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.6.1
Vereinfache den Zähler.
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Multipliziere .
Schritt 2.6.1.2.1
Mutltipliziere mit .
Schritt 2.6.1.2.2
Mutltipliziere mit .
Schritt 2.6.1.3
Subtrahiere von .
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Ändere das zu .
Schritt 2.6.4
Schreibe als um.
Schritt 2.6.5
Faktorisiere aus heraus.
Schritt 2.6.6
Faktorisiere aus heraus.
Schritt 2.6.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.7
Fasse die Lösungen zusammen.
Schritt 2.8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 2.9
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Schritt 2.9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 2.9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.9.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 2.9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 2.9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.9.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 2.9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 2.9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.9.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 2.9.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 2.10
Die Lösung besteht aus allen wahren Intervallen.
oder
oder
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4