Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3
Schritt 3.1
Vereinfache den Zähler.
Schritt 3.1.1
Potenziere mit .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.1.5
Mutltipliziere mit .
Schritt 3.1.6
Addiere und .
Schritt 3.1.7
Faktorisiere aus heraus.
Schritt 3.1.7.1
Faktorisiere aus heraus.
Schritt 3.1.7.2
Faktorisiere aus heraus.
Schritt 3.1.7.3
Faktorisiere aus heraus.
Schritt 3.1.8
Schreibe als um.
Schritt 3.1.8.1
Schreibe als um.
Schritt 3.1.8.2
Schreibe als um.
Schritt 3.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 3.1.10
Potenziere mit .
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache .
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Wende das Distributivgesetz an.
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.1.5
Mutltipliziere mit .
Schritt 4.1.6
Addiere und .
Schritt 4.1.7
Faktorisiere aus heraus.
Schritt 4.1.7.1
Faktorisiere aus heraus.
Schritt 4.1.7.2
Faktorisiere aus heraus.
Schritt 4.1.7.3
Faktorisiere aus heraus.
Schritt 4.1.8
Schreibe als um.
Schritt 4.1.8.1
Schreibe als um.
Schritt 4.1.8.2
Schreibe als um.
Schritt 4.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 4.1.10
Potenziere mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache .
Schritt 4.4
Ändere das zu .
Schritt 5
Schritt 5.1
Vereinfache den Zähler.
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Wende das Distributivgesetz an.
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.1.5
Mutltipliziere mit .
Schritt 5.1.6
Addiere und .
Schritt 5.1.7
Faktorisiere aus heraus.
Schritt 5.1.7.1
Faktorisiere aus heraus.
Schritt 5.1.7.2
Faktorisiere aus heraus.
Schritt 5.1.7.3
Faktorisiere aus heraus.
Schritt 5.1.8
Schreibe als um.
Schritt 5.1.8.1
Schreibe als um.
Schritt 5.1.8.2
Schreibe als um.
Schritt 5.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 5.1.10
Potenziere mit .
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Vereinfache .
Schritt 5.4
Ändere das zu .
Schritt 6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 7
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 9
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 10