Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3
Schritt 3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5
Schritt 5.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Dividiere durch .
Schritt 5.3
Ziehe die angegebene Wurzel auf beiden Seiten der Ungleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4
Vereinfache die Gleichung.
Schritt 5.4.1
Vereinfache die linke Seite.
Schritt 5.4.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 5.4.2
Vereinfache die rechte Seite.
Schritt 5.4.2.1
Vereinfache .
Schritt 5.4.2.1.1
Schreibe als um.
Schritt 5.4.2.1.1.1
Faktorisiere aus heraus.
Schritt 5.4.2.1.1.2
Schreibe als um.
Schritt 5.4.2.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 5.4.2.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.5
Schreibe als abschnittsweise Funktion.
Schritt 5.5.1
Um das Intervall für den ersten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes nicht negativ ist.
Schritt 5.5.2
Entferne den Absolutwert in dem Teil, in dem nicht negativ ist.
Schritt 5.5.3
Um das Intervall für den zweiten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes negativ ist.
Schritt 5.5.4
Entferne den Absolutwert und multipliziere mit in dem Teil, in dem negativ ist.
Schritt 5.5.5
Schreibe als eine abschnittsweise Funktion.
Schritt 5.6
Bestimme die Schnittmenge von und .
Schritt 5.7
Löse , wenn ergibt.
Schritt 5.7.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.7.1.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 5.7.1.2
Vereinfache die linke Seite.
Schritt 5.7.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.7.1.2.2
Dividiere durch .
Schritt 5.7.1.3
Vereinfache die rechte Seite.
Schritt 5.7.1.3.1
Bringe die negative Eins aus dem Nenner von .
Schritt 5.7.1.3.2
Schreibe als um.
Schritt 5.7.1.3.3
Mutltipliziere mit .
Schritt 5.7.2
Bestimme die Schnittmenge von und .
Schritt 5.8
Ermittele die Vereinigungsmenge der Lösungen.
Schritt 6
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 7