Lineare Algebra Beispiele

Bestimme die Determinante [[-9/7,1/7,-3/7],[40/21,-2/7,11/21],[-47/7,6/7,-18/7]]
Schritt 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Consider the corresponding sign chart.
Schritt 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 1.3
The minor for is the determinant with row and column deleted.
Schritt 1.4
Multiply element by its cofactor.
Schritt 1.5
The minor for is the determinant with row and column deleted.
Schritt 1.6
Multiply element by its cofactor.
Schritt 1.7
The minor for is the determinant with row and column deleted.
Schritt 1.8
Multiply element by its cofactor.
Schritt 1.9
Add the terms together.
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3
Mutltipliziere mit .
Schritt 2.2.1.1.4
Mutltipliziere mit .
Schritt 2.2.1.1.5
Mutltipliziere mit .
Schritt 2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.2.2
Faktorisiere aus heraus.
Schritt 2.2.1.2.3
Faktorisiere aus heraus.
Schritt 2.2.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.5
Forme den Ausdruck um.
Schritt 2.2.1.3
Mutltipliziere mit .
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.1.5
Mutltipliziere mit .
Schritt 2.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3
Subtrahiere von .
Schritt 2.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Faktorisiere aus heraus.
Schritt 2.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.2.1
Faktorisiere aus heraus.
Schritt 2.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2.3
Forme den Ausdruck um.
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.1.3
Faktorisiere aus heraus.
Schritt 3.2.1.1.4
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.5
Forme den Ausdruck um.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Mutltipliziere mit .
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.1.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.6.1
Mutltipliziere mit .
Schritt 3.2.1.6.2
Mutltipliziere mit .
Schritt 3.2.1.6.3
Mutltipliziere mit .
Schritt 3.2.1.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.7.1
Mutltipliziere mit .
Schritt 3.2.1.7.2
Mutltipliziere mit .
Schritt 3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Mutltipliziere mit .
Schritt 3.2.3.2
Mutltipliziere mit .
Schritt 3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Mutltipliziere mit .
Schritt 3.2.5.2
Addiere und .
Schritt 3.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.1
Faktorisiere aus heraus.
Schritt 3.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.2.1
Faktorisiere aus heraus.
Schritt 3.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.6.2.3
Forme den Ausdruck um.
Schritt 3.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Faktorisiere aus heraus.
Schritt 4.2.1.1.2
Faktorisiere aus heraus.
Schritt 4.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.4
Forme den Ausdruck um.
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.1.4
Mutltipliziere mit .
Schritt 4.2.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.5.1
Mutltipliziere mit .
Schritt 4.2.1.5.2
Mutltipliziere mit .
Schritt 4.2.1.5.3
Mutltipliziere mit .
Schritt 4.2.1.5.4
Mutltipliziere mit .
Schritt 4.2.1.5.5
Mutltipliziere mit .
Schritt 4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.3
Subtrahiere von .
Schritt 4.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Faktorisiere aus heraus.
Schritt 4.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.2.1
Faktorisiere aus heraus.
Schritt 4.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2.3
Forme den Ausdruck um.
Schritt 4.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Mutltipliziere mit .
Schritt 5.1.1.2
Mutltipliziere mit .
Schritt 5.1.1.3
Mutltipliziere mit .
Schritt 5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Mutltipliziere mit .
Schritt 5.1.2.2
Mutltipliziere mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.2.4
Mutltipliziere mit .
Schritt 5.1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Mutltipliziere mit .
Schritt 5.1.3.2
Mutltipliziere mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.3.4
Mutltipliziere mit .
Schritt 5.1.3.5
Mutltipliziere mit .
Schritt 5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3
Addiere und .
Schritt 5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.6
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1
Mutltipliziere mit .
Schritt 5.6.2
Mutltipliziere mit .
Schritt 5.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.8
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.8.1
Mutltipliziere mit .
Schritt 5.8.2
Addiere und .
Schritt 5.9
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.9.1
Faktorisiere aus heraus.
Schritt 5.9.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.9.2.1
Faktorisiere aus heraus.
Schritt 5.9.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.9.2.3
Forme den Ausdruck um.
Schritt 5.10
Ziehe das Minuszeichen vor den Bruch.