Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
,
Schritt 1
Schritt 1.1
Stelle und um.
Schritt 1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.3
Bringe alle Terme, die keine Variable enthalten, auf die rechte Seite der Gleichung.
Schritt 1.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.2
Subtrahiere von .
Schritt 2
Stelle das Gleichungssystem in Matrixformat dar.
Schritt 3
Schritt 3.1
Write in determinant notation.
Schritt 3.2
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 3.3
Vereinfache die Determinante.
Schritt 3.3.1
Vereinfache jeden Term.
Schritt 3.3.1.1
Mutltipliziere mit .
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 3.3.2
Subtrahiere von .
Schritt 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Schritt 5
Schritt 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Schritt 5.2
Find the determinant.
Schritt 5.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.2.2
Vereinfache die Determinante.
Schritt 5.2.2.1
Vereinfache jeden Term.
Schritt 5.2.2.1.1
Mutltipliziere mit .
Schritt 5.2.2.1.2
Mutltipliziere mit .
Schritt 5.2.2.2
Addiere und .
Schritt 5.3
Use the formula to solve for .
Schritt 5.4
Substitute for and for in the formula.
Schritt 5.5
Dividiere durch .
Schritt 6
Schritt 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Schritt 6.2
Find the determinant.
Schritt 6.2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 6.2.2
Vereinfache die Determinante.
Schritt 6.2.2.1
Vereinfache jeden Term.
Schritt 6.2.2.1.1
Mutltipliziere mit .
Schritt 6.2.2.1.2
Mutltipliziere mit .
Schritt 6.2.2.2
Addiere und .
Schritt 6.3
Use the formula to solve for .
Schritt 6.4
Substitute for and for in the formula.
Schritt 6.5
Dividiere durch .
Schritt 7
Liste die Lösung des Gleichungssystems auf.