Lineare Algebra Beispiele

Bestimme die Variablen [[2,7],[5,3]]x=[[-3,8],[7,-9]]
Schritt 1
Prüfe, ob die Funktionsregel linear ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um zu ermitteln, ob die Tabelle einer Funktionsregel folgt, prüfe, ob die Werte der linearen Form folgen.
Schritt 1.2
Erzeuge eine Menge von Gleichungen aus der Tabelle, sodass .
Schritt 1.3
Berechne die Werte von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Schreibe die Gleichung als um.
Schritt 1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.3.1.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Ersetze alle in durch .
Schritt 1.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.1.1
Entferne die Klammern.
Schritt 1.3.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.2.1.1
Bringe auf die linke Seite von .
Schritt 1.3.2.2.2.1.2
Subtrahiere von .
Schritt 1.3.2.3
Ersetze alle in durch .
Schritt 1.3.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.1.1
Entferne die Klammern.
Schritt 1.3.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.4.2.1.1
Bringe auf die linke Seite von .
Schritt 1.3.2.4.2.1.2
Subtrahiere von .
Schritt 1.3.2.5
Ersetze alle in durch .
Schritt 1.3.2.6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.6.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.6.1.1
Entferne die Klammern.
Schritt 1.3.2.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.6.2.1.1
Bringe auf die linke Seite von .
Schritt 1.3.2.6.2.1.2
Subtrahiere von .
Schritt 1.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Schreibe die Gleichung als um.
Schritt 1.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.3.3.2.2
Addiere und .
Schritt 1.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Ersetze alle in durch .
Schritt 1.3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.2.1.1
Mutltipliziere mit .
Schritt 1.3.4.2.1.2
Subtrahiere von .
Schritt 1.3.4.3
Ersetze alle in durch .
Schritt 1.3.4.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.4.1.1
Mutltipliziere mit .
Schritt 1.3.4.4.1.2
Subtrahiere von .
Schritt 1.3.4.5
Ersetze alle in durch .
Schritt 1.3.4.6
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.6.1.1
Mutltipliziere mit .
Schritt 1.3.4.6.1.2
Addiere und .
Schritt 1.3.5
Da nicht wahr ist, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 1.4
Da für die entsprechenden -Werte , ist die Funktion nicht linear.
Die Funktion ist nicht linear
Die Funktion ist nicht linear
Schritt 2
Prüfe, ob die Funktionsregel quadratisch ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um zu ermitteln, ob der Tabelle eine Funktionsregel zugrunde liegt, prüfe, ob die Werte der Form folgen.
Schritt 2.2
Erzeuge einen Menge mit Gleichungen aus der Tabelle, sodass .
Schritt 2.3
Berechne die Werte von , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Schreibe die Gleichung als um.
Schritt 2.3.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Potenziere mit .
Schritt 2.3.1.2.2
Bringe auf die linke Seite von .
Schritt 2.3.1.2.3
Bringe auf die linke Seite von .
Schritt 2.3.1.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.1.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Ersetze alle in durch .
Schritt 2.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1.1
Entferne die Klammern.
Schritt 2.3.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1.1.1
Potenziere mit .
Schritt 2.3.2.2.2.1.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.2.2.1.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2.2.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1.2.1
Subtrahiere von .
Schritt 2.3.2.2.2.1.2.2
Subtrahiere von .
Schritt 2.3.2.3
Ersetze alle in durch .
Schritt 2.3.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.1.1
Entferne die Klammern.
Schritt 2.3.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1.1.1
Potenziere mit .
Schritt 2.3.2.4.2.1.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.4.2.1.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2.4.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.4.2.1.2.1
Subtrahiere von .
Schritt 2.3.2.4.2.1.2.2
Subtrahiere von .
Schritt 2.3.2.5
Ersetze alle in durch .
Schritt 2.3.2.6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.1.1
Entferne die Klammern.
Schritt 2.3.2.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.2.1.1.1
Potenziere mit .
Schritt 2.3.2.6.2.1.1.2
Bringe auf die linke Seite von .
Schritt 2.3.2.6.2.1.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2.6.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.6.2.1.2.1
Subtrahiere von .
Schritt 2.3.2.6.2.1.2.2
Subtrahiere von .
Schritt 2.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Schreibe die Gleichung als um.
Schritt 2.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.3.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.3.2.3
Addiere und .
Schritt 2.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Ersetze alle in durch .
Schritt 2.3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.3.4.2.1.1.2
Mutltipliziere mit .
Schritt 2.3.4.2.1.1.3
Mutltipliziere mit .
Schritt 2.3.4.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.2.1.2.1
Subtrahiere von .
Schritt 2.3.4.2.1.2.2
Subtrahiere von .
Schritt 2.3.4.3
Ersetze alle in durch .
Schritt 2.3.4.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.4.1.1.1
Wende das Distributivgesetz an.
Schritt 2.3.4.4.1.1.2
Mutltipliziere mit .
Schritt 2.3.4.4.1.1.3
Mutltipliziere mit .
Schritt 2.3.4.4.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.4.1.2.1
Subtrahiere von .
Schritt 2.3.4.4.1.2.2
Subtrahiere von .
Schritt 2.3.4.5
Ersetze alle in durch .
Schritt 2.3.4.6
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.6.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.6.1.1.1
Wende das Distributivgesetz an.
Schritt 2.3.4.6.1.1.2
Mutltipliziere mit .
Schritt 2.3.4.6.1.1.3
Mutltipliziere mit .
Schritt 2.3.4.6.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.6.1.2.1
Addiere und .
Schritt 2.3.4.6.1.2.2
Addiere und .
Schritt 2.3.5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Schreibe die Gleichung als um.
Schritt 2.3.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.5.2.2
Addiere und .
Schritt 2.3.5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.3.2.1.2
Dividiere durch .
Schritt 2.3.6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Ersetze alle in durch .
Schritt 2.3.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.6.2.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.3.6.2.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.2.1.1.1.4
Forme den Ausdruck um.
Schritt 2.3.6.2.1.1.2
Kombiniere und .
Schritt 2.3.6.2.1.1.3
Mutltipliziere mit .
Schritt 2.3.6.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.6.2.1.3
Kombiniere und .
Schritt 2.3.6.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.6.2.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.2.1.5.1
Mutltipliziere mit .
Schritt 2.3.6.2.1.5.2
Addiere und .
Schritt 2.3.6.3
Ersetze alle in durch .
Schritt 2.3.6.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.4.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.4.1.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.6.4.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.3.6.4.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.4.1.1.1.4
Forme den Ausdruck um.
Schritt 2.3.6.4.1.1.2
Kombiniere und .
Schritt 2.3.6.4.1.1.3
Mutltipliziere mit .
Schritt 2.3.6.4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.6.4.1.3
Kombiniere und .
Schritt 2.3.6.4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.6.4.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.4.1.5.1
Mutltipliziere mit .
Schritt 2.3.6.4.1.5.2
Subtrahiere von .
Schritt 2.3.6.4.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.6.5
Ersetze alle in durch .
Schritt 2.3.6.6
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.6.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.6.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.6.1.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.6.6.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.3.6.6.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.6.1.1.1.4
Forme den Ausdruck um.
Schritt 2.3.6.6.1.1.2
Schreibe als um.
Schritt 2.3.6.6.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.6.6.1.3
Kombiniere und .
Schritt 2.3.6.6.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.6.6.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.6.1.5.1
Mutltipliziere mit .
Schritt 2.3.6.6.1.5.2
Subtrahiere von .
Schritt 2.3.6.6.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.7
Da nicht wahr ist, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 2.4
Berechne den Wert von für jeden -Wert in der Tabelle und vergleiche diesen Wert mit dem gegebenen -Wert in der Tabelle.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Berechne den Wert von so, dass , wenn , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1.1
Potenziere mit .
Schritt 2.4.1.1.2
Mutltipliziere mit .
Schritt 2.4.1.1.3
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.2.1
Addiere und .
Schritt 2.4.1.2.2
Addiere und .
Schritt 2.4.2
Wenn die Tabelle eine quadratische Funktionsregel hat, gilt für den korrespondierenden -Wert, . Diesen Test besteht die Tabelle nicht, da und . Die Funktionsregel kann nicht quadratisch sein.
Schritt 2.4.3
Da für die entsprechenden -Werte , ist die Funktion nicht quadratisch.
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Die Funktion ist nicht quadratisch
Schritt 3
Prüfe, ob die Funktionsregel kubisch ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um zu ermitteln, ob der Tabelle eine Funktionsregel zugrunde liegt, prüfe, ob die Werte der Form folgen.
Schritt 3.2
Erzeuge einen Menge mit Gleichungen aus der Tabelle, sodass .
Schritt 3.3
Berechne die Werte von , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Schreibe die Gleichung als um.
Schritt 3.3.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.1
Potenziere mit .
Schritt 3.3.1.2.2
Bringe auf die linke Seite von .
Schritt 3.3.1.2.3
Potenziere mit .
Schritt 3.3.1.2.4
Bringe auf die linke Seite von .
Schritt 3.3.1.2.5
Bringe auf die linke Seite von .
Schritt 3.3.1.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.1.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.1.3.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Ersetze alle in durch .
Schritt 3.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.1.1
Entferne die Klammern.
Schritt 3.3.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 3.3.2.2.2.1.1.2
Subtrahiere von .
Schritt 3.3.2.2.2.1.1.3
Addiere und .
Schritt 3.3.2.2.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1.2.1
Potenziere mit .
Schritt 3.3.2.2.2.1.2.2
Bringe auf die linke Seite von .
Schritt 3.3.2.2.2.1.2.3
Potenziere mit .
Schritt 3.3.2.2.2.1.2.4
Bringe auf die linke Seite von .
Schritt 3.3.2.2.2.1.3
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1.3.1.1
Subtrahiere von .
Schritt 3.3.2.2.2.1.3.1.2
Addiere und .
Schritt 3.3.2.2.2.1.3.2
Subtrahiere von .
Schritt 3.3.2.3
Ersetze alle in durch .
Schritt 3.3.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.1.1
Entferne die Klammern.
Schritt 3.3.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 3.3.2.4.2.1.1.2
Subtrahiere von .
Schritt 3.3.2.4.2.1.1.3
Addiere und .
Schritt 3.3.2.4.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1.2.1
Potenziere mit .
Schritt 3.3.2.4.2.1.2.2
Bringe auf die linke Seite von .
Schritt 3.3.2.4.2.1.2.3
Potenziere mit .
Schritt 3.3.2.4.2.1.2.4
Bringe auf die linke Seite von .
Schritt 3.3.2.4.2.1.3
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1.3.1.1
Subtrahiere von .
Schritt 3.3.2.4.2.1.3.1.2
Addiere und .
Schritt 3.3.2.4.2.1.3.2
Subtrahiere von .
Schritt 3.3.2.5
Ersetze alle in durch .
Schritt 3.3.2.6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.1.1
Entferne die Klammern.
Schritt 3.3.2.6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 3.3.2.6.2.1.1.2
Subtrahiere von .
Schritt 3.3.2.6.2.1.1.3
Addiere und .
Schritt 3.3.2.6.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1.2.1
Potenziere mit .
Schritt 3.3.2.6.2.1.2.2
Bringe auf die linke Seite von .
Schritt 3.3.2.6.2.1.2.3
Potenziere mit .
Schritt 3.3.2.6.2.1.2.4
Bringe auf die linke Seite von .
Schritt 3.3.2.6.2.1.3
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.6.2.1.3.1.1
Subtrahiere von .
Schritt 3.3.2.6.2.1.3.1.2
Addiere und .
Schritt 3.3.2.6.2.1.3.2
Subtrahiere von .
Schritt 3.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.3.2.2
Addiere und .
Schritt 3.3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.3.2.1.2
Dividiere durch .
Schritt 3.3.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Ersetze alle in durch .
Schritt 3.3.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.2.1.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.2.1.1.1.1
Mutltipliziere mit .
Schritt 3.3.4.2.1.1.1.2
Kombiniere und .
Schritt 3.3.4.2.1.1.1.3
Mutltipliziere mit .
Schritt 3.3.4.2.1.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.4.2.1.3
Kombiniere und .
Schritt 3.3.4.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.4.2.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.2.1.5.1
Mutltipliziere mit .
Schritt 3.3.4.2.1.5.2
Subtrahiere von .
Schritt 3.3.4.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4.3
Ersetze alle in durch .
Schritt 3.3.4.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.4.1.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.4.1.1.1.1
Mutltipliziere mit .
Schritt 3.3.4.4.1.1.1.2
Kombiniere und .
Schritt 3.3.4.4.1.1.1.3
Mutltipliziere mit .
Schritt 3.3.4.4.1.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4.4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.4.4.1.3
Kombiniere und .
Schritt 3.3.4.4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.4.4.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.4.1.5.1
Mutltipliziere mit .
Schritt 3.3.4.4.1.5.2
Subtrahiere von .
Schritt 3.3.4.4.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4.5
Ersetze alle in durch .
Schritt 3.3.4.6
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.6.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.6.1.1.1
Mutltipliziere mit .
Schritt 3.3.4.6.1.1.2
Kombiniere und .
Schritt 3.3.4.6.1.1.3
Mutltipliziere mit .
Schritt 3.3.4.6.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.4.6.1.3
Kombiniere und .
Schritt 3.3.4.6.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.4.6.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.6.1.5.1
Mutltipliziere mit .
Schritt 3.3.4.6.1.5.2
Addiere und .
Schritt 3.3.4.6.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.5
Da nicht wahr ist, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 3.4
Berechne den Wert von für jeden -Wert in der Tabelle und vergleiche diesen Wert mit dem gegebenen -Wert in der Tabelle.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Berechne den Wert von so, dass , wenn , , , und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.1
Potenziere mit .
Schritt 3.4.1.1.2
Mutltipliziere mit .
Schritt 3.4.1.1.3
Potenziere mit .
Schritt 3.4.1.1.4
Mutltipliziere mit .
Schritt 3.4.1.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.5.1
Mutltipliziere mit .
Schritt 3.4.1.1.5.2
Mutltipliziere mit .
Schritt 3.4.1.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.2.1
Addiere und .
Schritt 3.4.1.2.2
Addiere und .
Schritt 3.4.2
Wenn die Tabelle eine kubische Funktionsregel hat, für den entsprechenden -Wert, . Dieser Test wird nicht bestanden, da und . Die Funktionsregel kann nicht kubisch sein.
Schritt 3.4.3
Die Funktion ist nicht kubisch, da für die entsprechenden -Werte .
Die Funktion ist nicht kubisch
Die Funktion ist nicht kubisch
Die Funktion ist nicht kubisch
Schritt 4
Es gibt keine Werte für , , und in den Gleichungen , und , die für alle Paare von und funktionieren.
Die Tabelle hat keine Funktionsregel, die linear, quadratisch oder kubisch ist.