Lineare Algebra Beispiele

Bestimme die Variablen [[-2,-5],[-2,-1]][[a],[b]]+[[-19],[11]]=[[-43],[-5]]
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Schritt 1.1.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
Schritt 1.2
Addiere die entsprechenden Elemente.
Schritt 2
Die Matrixgleichung kann als eine Menge von Gleichungen geschrieben werden.
Schritt 3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.3
Addiere und .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.3.1.2
Dividiere durch .
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 4.2.1.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.2.4
Forme den Ausdruck um.
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.1.4
Mutltipliziere mit .
Schritt 4.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Subtrahiere von .
Schritt 4.2.1.2.2
Addiere und .
Schritt 5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.1.2
Addiere und .
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Dividiere durch .
Schritt 6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.1.2
Dividiere durch .
Schritt 6.2.1.1.2
Mutltipliziere mit .
Schritt 6.2.1.2
Addiere und .
Schritt 7
Liste alle Lösungen auf.