Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Schreibe als um.
Schritt 2.2
Faktorisiere durch Gruppieren.
Schritt 2.2.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Schreibe um als plus
Schritt 2.2.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Schritt 2.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2.2
Vereinfache die linke Seite.
Schritt 2.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.2.1.2
Dividiere durch .
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Dividiere durch .
Schritt 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4.4
Vereinfache .
Schritt 4.4.1
Schreibe als um.
Schritt 4.4.2
Vereinfache den Zähler.
Schritt 4.4.2.1
Schreibe als um.
Schritt 4.4.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.4.3
Vereinfache den Nenner.
Schritt 4.4.3.1
Schreibe als um.
Schritt 4.4.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 6