Lineare Algebra Beispiele

Bestimme die Eigenwerte [[4,0,1],[2,3,2],[49,0,4]]
Schritt 1
Stelle die Formel auf, um die charakteristische Gleichung zu ermitteln.
Schritt 2
Die Identitätsmatrix oder Einheitsmatrix der Größe ist die Quadratmatrix mit Einsen auf der Hauptdiagonalen und Nullen überall anders.
Schritt 3
Setze die bekannten Werte in ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze durch .
Schritt 3.2
Ersetze durch .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Multipliziere mit jedem Element der Matrix.
Schritt 4.1.2
Vereinfache jedes Element der Matrix.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Mutltipliziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.3.1
Mutltipliziere mit .
Schritt 4.1.2.3.2
Mutltipliziere mit .
Schritt 4.1.2.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.5
Mutltipliziere mit .
Schritt 4.1.2.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Mutltipliziere mit .
Schritt 4.1.2.7
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.7.1
Mutltipliziere mit .
Schritt 4.1.2.7.2
Mutltipliziere mit .
Schritt 4.1.2.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.8.1
Mutltipliziere mit .
Schritt 4.1.2.8.2
Mutltipliziere mit .
Schritt 4.1.2.9
Mutltipliziere mit .
Schritt 4.2
Addiere die entsprechenden Elemente.
Schritt 4.3
Simplify each element.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Addiere und .
Schritt 4.3.4
Addiere und .
Schritt 4.3.5
Addiere und .
Schritt 4.3.6
Addiere und .
Schritt 5
Find the determinant.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Consider the corresponding sign chart.
Schritt 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 5.1.3
The minor for is the determinant with row and column deleted.
Schritt 5.1.4
Multiply element by its cofactor.
Schritt 5.1.5
The minor for is the determinant with row and column deleted.
Schritt 5.1.6
Multiply element by its cofactor.
Schritt 5.1.7
The minor for is the determinant with row and column deleted.
Schritt 5.1.8
Multiply element by its cofactor.
Schritt 5.1.9
Add the terms together.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 5.4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 5.4.2.1.1.2
Wende das Distributivgesetz an.
Schritt 5.4.2.1.1.3
Wende das Distributivgesetz an.
Schritt 5.4.2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.2.1.1
Mutltipliziere mit .
Schritt 5.4.2.1.2.1.2
Mutltipliziere mit .
Schritt 5.4.2.1.2.1.3
Mutltipliziere mit .
Schritt 5.4.2.1.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.4.2.1.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.2.1.5.1
Bewege .
Schritt 5.4.2.1.2.1.5.2
Mutltipliziere mit .
Schritt 5.4.2.1.2.1.6
Mutltipliziere mit .
Schritt 5.4.2.1.2.1.7
Mutltipliziere mit .
Schritt 5.4.2.1.2.2
Subtrahiere von .
Schritt 5.4.2.1.3
Mutltipliziere mit .
Schritt 5.4.2.2
Subtrahiere von .
Schritt 5.4.2.3
Stelle und um.
Schritt 5.5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.1
Addiere und .
Schritt 5.5.1.2
Addiere und .
Schritt 5.5.2
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 5.5.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.1
Mutltipliziere mit .
Schritt 5.5.3.2
Mutltipliziere mit .
Schritt 5.5.3.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.3.1
Bewege .
Schritt 5.5.3.3.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.3.2.1
Potenziere mit .
Schritt 5.5.3.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.5.3.3.3
Addiere und .
Schritt 5.5.3.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.5.3.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.3.5.1
Bewege .
Schritt 5.5.3.5.2
Mutltipliziere mit .
Schritt 5.5.3.6
Mutltipliziere mit .
Schritt 5.5.3.7
Mutltipliziere mit .
Schritt 5.5.4
Addiere und .
Schritt 5.5.5
Addiere und .
Schritt 5.5.6
Bewege .
Schritt 5.5.7
Bewege .
Schritt 5.5.8
Stelle und um.
Schritt 6
Setze das charakteristische Polynom gleich , um die Eigenwerte zu ermitteln.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 7.1.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 7.1.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 7.1.3
Schreibe als um.
Schritt 7.1.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 7.1.4.2
Entferne unnötige Klammern.
Schritt 7.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 7.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Setze gleich .
Schritt 7.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 7.3.2.2.2.2
Dividiere durch .
Schritt 7.3.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.3.1
Dividiere durch .
Schritt 7.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Setze gleich .
Schritt 7.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Setze gleich .
Schritt 7.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7.6
Die endgültige Lösung sind alle Werte, die wahr machen.