Lineare Algebra Beispiele

Ermittle die normierte Zeilenstufenform [[1,1,0],[1,0,1],[1,0,1],[2,1,0],[2,1,0]]
[110101101210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110101101210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 1
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
[1101-10-11-0101210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110110110101210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 1.2
Vereinfache R2R2.
[1100-11101210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011101210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[1100-11101210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011101210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 2
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[1100-111-10-11-0210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011110110210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 2.2
Vereinfache R3R3.
[1100-110-11210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011011210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[1100-110-11210210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011011210210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 3
Perform the row operation R4=R4-2R1R4=R42R1 to make the entry at 4,14,1 a 00.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Perform the row operation R4=R4-2R1R4=R42R1 to make the entry at 4,14,1 a 00.
[1100-110-112-211-210-20210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢110011011221121020210⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Schritt 3.2
Vereinfache R4.
[1100-110-110-10210]
[1100-110-110-10210]
Schritt 4
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
[1100-110-110-102-211-210-20]
Schritt 4.2
Vereinfache R5.
[1100-110-110-100-10]
[1100-110-110-100-10]
Schritt 5
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[110-0--1-110-110-100-10]
Schritt 5.2
Vereinfache R2.
[11001-10-110-100-10]
[11001-10-110-100-10]
Schritt 6
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[11001-10+0-1+111-10-100-10]
Schritt 6.2
Vereinfache R3.
[11001-10000-100-10]
[11001-10000-100-10]
Schritt 7
Perform the row operation R4=R4+R2 to make the entry at 4,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Perform the row operation R4=R4+R2 to make the entry at 4,2 a 0.
[11001-10000+0-1+110-10-10]
Schritt 7.2
Vereinfache R4.
[11001-100000-10-10]
[11001-100000-10-10]
Schritt 8
Perform the row operation R5=R5+R2 to make the entry at 5,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Perform the row operation R5=R5+R2 to make the entry at 5,2 a 0.
[11001-100000-10+0-1+110-1]
Schritt 8.2
Vereinfache R5.
[11001-100000-100-1]
[11001-100000-100-1]
Schritt 9
Swap R4 with R3 to put a nonzero entry at 3,3.
[11001-100-100000-1]
Schritt 10
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
[11001-1-0-0--100000-1]
Schritt 10.2
Vereinfache R3.
[11001-100100000-1]
[11001-100100000-1]
Schritt 11
Perform the row operation R5=R5+R3 to make the entry at 5,3 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Perform the row operation R5=R5+R3 to make the entry at 5,3 a 0.
[11001-10010000+00+0-1+11]
Schritt 11.2
Vereinfache R5.
[11001-1001000000]
[11001-1001000000]
Schritt 12
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
[1100+01+0-1+11001000000]
Schritt 12.2
Vereinfache R2.
[110010001000000]
[110010001000000]
Schritt 13
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-0010001000000]
Schritt 13.2
Vereinfache R1.
[100010001000000]
[100010001000000]
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]