Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Berechne den Abstand von zum Ursprung mit Hilfe der Formel .
Schritt 2
Schritt 2.1
Vereinfache den Ausdruck.
Schritt 2.1.1
Potenziere mit .
Schritt 2.1.2
Wende die Produktregel auf an.
Schritt 2.1.3
Potenziere mit .
Schritt 2.2
Schreibe als um.
Schritt 2.2.1
Benutze , um als neu zu schreiben.
Schritt 2.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2
Forme den Ausdruck um.
Schritt 2.2.5
Berechne den Exponenten.
Schritt 2.3
Vereinfache den Ausdruck.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Addiere und .
Schritt 2.3.3
Schreibe als um.
Schritt 2.3.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3
Berechne den Referenzwinkel .
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Teiler von und .
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 4.2
Schreibe als um.
Schritt 4.3
ist ungefähr , was negativ ist, also kehre das Vorzeichen von um und entferne den Absolutwert
Schritt 4.4
Der genau Wert von ist .
Schritt 5
Der Punkt liegt im zweiten Quadranten, da negativ und positiv ist. Die Quadranten sind gegen den Uhrzeigersinn gekennzeichnet, beginnend oben rechts.
Quadrant
Schritt 6
ist im zweiten Quadranten.
Schritt 7
Schritt 7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2
Kombiniere Brüche.
Schritt 7.2.1
Kombiniere und .
Schritt 7.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.3
Vereinfache den Zähler.
Schritt 7.3.1
Bringe auf die linke Seite von .
Schritt 7.3.2
Subtrahiere von .
Schritt 8
Verwende die Formel um die Wurzeln der komplexen Zahl zu ermitteln.
,
Schritt 9
Schritt 9.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.2
Kombiniere und .
Schritt 9.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.4
Subtrahiere von .
Schritt 9.4.1
Stelle und um.
Schritt 9.4.2
Subtrahiere von .
Schritt 9.5
Kombiniere und .
Schritt 9.6
Kombiniere und .
Schritt 9.7
Kombiniere und .
Schritt 9.8
Kombiniere und .
Schritt 9.9
Entferne die Klammern.
Schritt 9.9.1
Entferne die Klammern.
Schritt 9.9.2
Entferne die Klammern.
Schritt 9.9.3
Entferne die Klammern.
Schritt 9.9.4
Entferne die Klammern.
Schritt 9.9.5
Entferne die Klammern.
Schritt 9.9.6
Entferne die Klammern.
Schritt 9.9.7
Entferne die Klammern.
Schritt 10
Schritt 10.1
Entferne die Klammern.
Schritt 10.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 10.3
Kombiniere und .
Schritt 10.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.5
Vereinfache den Zähler.
Schritt 10.5.1
Bringe auf die linke Seite von .
Schritt 10.5.2
Subtrahiere von .
Schritt 10.6
Multipliziere .
Schritt 10.6.1
Mutltipliziere mit .
Schritt 10.6.2
Mutltipliziere mit .
Schritt 10.7
Addiere und .
Schritt 10.8
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 10.9
Kürze den gemeinsamen Faktor von .
Schritt 10.9.1
Faktorisiere aus heraus.
Schritt 10.9.2
Kürze den gemeinsamen Faktor.
Schritt 10.9.3
Forme den Ausdruck um.
Schritt 11
Schritt 11.1
Entferne die Klammern.
Schritt 11.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.3
Kombiniere und .
Schritt 11.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.5
Vereinfache den Zähler.
Schritt 11.5.1
Bringe auf die linke Seite von .
Schritt 11.5.2
Subtrahiere von .
Schritt 11.6
Mutltipliziere mit .
Schritt 11.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.8
Kombiniere und .
Schritt 11.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.10
Vereinfache den Zähler.
Schritt 11.10.1
Mutltipliziere mit .
Schritt 11.10.2
Addiere und .
Schritt 11.11
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 11.12
Kürze den gemeinsamen Faktor von .
Schritt 11.12.1
Faktorisiere aus heraus.
Schritt 11.12.2
Kürze den gemeinsamen Faktor.
Schritt 11.12.3
Forme den Ausdruck um.
Schritt 12
Liste die Lösungen auf.