Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2
Forme den Ausdruck um.
Schritt 3.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2
Forme den Ausdruck um.
Schritt 5.2.4
Vereinfache durch Substrahieren von Zahlen.
Schritt 5.2.4.1
Subtrahiere von .
Schritt 5.2.4.2
Addiere und .
Schritt 5.2.5
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Schritt 5.3.3.1
Benutze , um als neu zu schreiben.
Schritt 5.3.3.2
Multipliziere die Exponenten in .
Schritt 5.3.3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.2.2
Forme den Ausdruck um.
Schritt 5.3.3.3
Vereinfache.
Schritt 5.3.3.4
Addiere und .
Schritt 5.3.3.5
Addiere und .
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .