Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten mit .
Schritt 3.3
Vereinfache.
Schritt 3.3.1
Vereinfache die linke Seite.
Schritt 3.3.1.1
Vereinfache .
Schritt 3.3.1.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.1.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.1.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.1.1.3
Faktorisiere aus heraus.
Schritt 3.3.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.1.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.1.4
Vereinfache den Ausdruck.
Schritt 3.3.1.1.4.1
Mutltipliziere mit .
Schritt 3.3.1.1.4.2
Mutltipliziere mit .
Schritt 3.3.1.1.4.3
Stelle und um.
Schritt 3.3.2
Vereinfache die rechte Seite.
Schritt 3.3.2.1
Bringe auf die linke Seite von .
Schritt 3.4
Löse nach auf.
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.3.1
Vereinfache jeden Term.
Schritt 3.4.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.2.3.1.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Schritt 5.2.3.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.3
Faktorisiere aus heraus.
Schritt 5.2.3.2
Kombiniere und .
Schritt 5.2.3.3
Mutltipliziere mit .
Schritt 5.2.3.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.2.3.4.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.2.3.4.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.4.1.2
Faktorisiere aus heraus.
Schritt 5.2.3.4.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.4.1.4
Forme den Ausdruck um.
Schritt 5.2.3.4.2
Dividiere durch .
Schritt 5.2.3.5
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.5.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.5.2
Dividiere durch .
Schritt 5.2.3.6
Wende das Distributivgesetz an.
Schritt 5.2.3.7
Mutltipliziere mit .
Schritt 5.2.3.8
Multipliziere .
Schritt 5.2.3.8.1
Mutltipliziere mit .
Schritt 5.2.3.8.2
Mutltipliziere mit .
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.4.1
Subtrahiere von .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Schritt 5.3.3.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.1
Stelle und um.
Schritt 5.3.3.1.2
Faktorisiere aus heraus.
Schritt 5.3.3.1.3
Faktorisiere aus heraus.
Schritt 5.3.3.2
Addiere und .
Schritt 5.3.3.3
Addiere und .
Schritt 5.3.3.4
Kombiniere Exponenten.
Schritt 5.3.3.4.1
Faktorisiere das negative Vorzeichen heraus.
Schritt 5.3.3.4.2
Kombiniere und .
Schritt 5.3.3.4.3
Mutltipliziere mit .
Schritt 5.3.3.5
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.3.5.1
Faktorisiere aus heraus.
Schritt 5.3.3.5.2
Kürze die gemeinsamen Faktoren.
Schritt 5.3.3.5.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.5.2.3
Forme den Ausdruck um.
Schritt 5.3.3.5.2.4
Dividiere durch .
Schritt 5.3.3.6
Mutltipliziere mit .
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .