Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Vertausche die Variablen.
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Replace with to show the final answer.
Schritt 4
Schritt 4.1
Der Definitionsbereich der Inversen (Umkehrfunktion) ist der Wertebereich der ursprünglichen Funktion und umgekehrt. Finde den Definitionsbereich und den Wertebereich von und und vergleiche sie.
Schritt 4.2
Finde den Wertebereich von .
Schritt 4.2.1
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Schritt 4.3
Bestimme den Definitionsbereich von .
Schritt 4.3.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.3.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4.4
Bestimme den Definitionsbereich von .
Schritt 4.4.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4.5
Da der Definitionsbereich von der Wertebereich von ist und der Wertebereich von der Definitionsbereich von ist, ist die inverse Funktion von .
Schritt 5