Finite Mathematik Beispiele

Bestimme, ob stetig f(x)=(3x+1)/(x-x^2)
Schritt 1
Find the domain to determine if the expression is continuous.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Es sei . Ersetze für alle .
Schritt 1.2.1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.2.1
Potenziere mit .
Schritt 1.2.1.2.2
Faktorisiere aus heraus.
Schritt 1.2.1.2.3
Faktorisiere aus heraus.
Schritt 1.2.1.2.4
Faktorisiere aus heraus.
Schritt 1.2.1.3
Ersetze alle durch .
Schritt 1.2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.3
Setze gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.4.2.2.2.2
Dividiere durch .
Schritt 1.2.4.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.2.3.1
Dividiere durch .
Schritt 1.2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
Da der Definitionsbereich nicht alle reellen Zahlen umfasst, ist nicht stetig auf der Menge der reellen Zahlen.
Nicht stetig
Schritt 3