Finite Mathematik Beispiele

Löse durch Faktorisieren Quadratwurzel von x^2-10x+25+12 Quadratwurzel von x=15 Quadratwurzel von x
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Schreibe als um.
Schritt 2.1.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.1.1.3
Schreibe das Polynom neu.
Schritt 2.1.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2
Subtrahiere von .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 5
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Benutze , um als neu zu schreiben.
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Wende die Produktregel auf an.
Schritt 5.2.1.2
Potenziere mit .
Schritt 5.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.3.2.2
Forme den Ausdruck um.
Schritt 5.2.1.4
Vereinfache.
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Schreibe als um.
Schritt 5.3.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.2.1
Wende das Distributivgesetz an.
Schritt 5.3.1.2.2
Wende das Distributivgesetz an.
Schritt 5.3.1.2.3
Wende das Distributivgesetz an.
Schritt 5.3.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.1.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.3.1.2.1
Bewege .
Schritt 5.3.1.3.1.2.2
Mutltipliziere mit .
Schritt 5.3.1.3.1.3
Mutltipliziere mit .
Schritt 5.3.1.3.1.4
Mutltipliziere mit .
Schritt 5.3.1.3.1.5
Mutltipliziere mit .
Schritt 5.3.1.3.1.6
Mutltipliziere mit .
Schritt 5.3.1.3.1.7
Mutltipliziere mit .
Schritt 5.3.1.3.2
Subtrahiere von .
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass es auf der linken Seite ist.
Schritt 6.2
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2.2
Subtrahiere von .
Schritt 6.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 6.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 6.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1.1
Potenziere mit .
Schritt 6.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1.2.1
Mutltipliziere mit .
Schritt 6.5.1.2.2
Mutltipliziere mit .
Schritt 6.5.1.3
Subtrahiere von .
Schritt 6.5.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1.4.1
Faktorisiere aus heraus.
Schritt 6.5.1.4.2
Schreibe als um.
Schritt 6.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 6.5.2
Mutltipliziere mit .
Schritt 6.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1.1
Potenziere mit .
Schritt 6.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1.2.1
Mutltipliziere mit .
Schritt 6.6.1.2.2
Mutltipliziere mit .
Schritt 6.6.1.3
Subtrahiere von .
Schritt 6.6.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1.4.1
Faktorisiere aus heraus.
Schritt 6.6.1.4.2
Schreibe als um.
Schritt 6.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 6.6.2
Mutltipliziere mit .
Schritt 6.6.3
Ändere das zu .
Schritt 6.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.7.1.1
Potenziere mit .
Schritt 6.7.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.7.1.2.1
Mutltipliziere mit .
Schritt 6.7.1.2.2
Mutltipliziere mit .
Schritt 6.7.1.3
Subtrahiere von .
Schritt 6.7.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.7.1.4.1
Faktorisiere aus heraus.
Schritt 6.7.1.4.2
Schreibe als um.
Schritt 6.7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 6.7.2
Mutltipliziere mit .
Schritt 6.7.3
Ändere das zu .
Schritt 6.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 7
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: