Finite Mathematik Beispiele

Finde die Nullstellen f(x)=1/4x^4-6x^(3+7)
Schritt 1
Setze gleich .
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Kombiniere und .
Schritt 2.1.2
Addiere und .
Schritt 2.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Multipliziere jeden Term in mit .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.1.2
Forme den Ausdruck um.
Schritt 2.2.2.1.2
Mutltipliziere mit .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Mutltipliziere mit .
Schritt 2.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere mit .
Schritt 2.3.2
Faktorisiere aus heraus.
Schritt 2.3.3
Faktorisiere aus heraus.
Schritt 2.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1
Schreibe als um.
Schritt 2.5.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.5.2.2.3
Plus oder Minus ist .
Schritt 2.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.2.1.2
Dividiere durch .
Schritt 2.6.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.6.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.6.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.4.1
Schreibe als um.
Schritt 2.6.2.4.2
Jede Wurzel von ist .
Schritt 2.6.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.6.2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.6.2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 4