Finite Mathematik Beispiele

Finde die Nullstellen f(x)=x^3*(6x^2)*(11x)-6
Schritt 1
Setze gleich .
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Bewege .
Schritt 2.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.1.3
Addiere und .
Schritt 2.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Bewege .
Schritt 2.1.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Potenziere mit .
Schritt 2.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.2.3
Addiere und .
Schritt 2.1.3
Bringe auf die linke Seite von .
Schritt 2.1.4
Mutltipliziere mit .
Schritt 2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Schreibe als um.
Schritt 2.5.2
Jede Wurzel von ist .
Schritt 2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 4