Finite Mathematik Beispiele

Lösen mithilfe quadratischer Ergänzung x(x+2)+5=3(2-x)+x-4
Schritt 1
Bringe die Gleichung durch Vereinfachen in eine geeignete Form, um die quadratische Ergänzung anzuwenden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Mutltipliziere mit .
Schritt 1.1.3
Bringe auf die linke Seite von .
Schritt 1.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Wende das Distributivgesetz an.
Schritt 1.2.1.2
Mutltipliziere mit .
Schritt 1.2.1.3
Mutltipliziere mit .
Schritt 1.2.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Subtrahiere von .
Schritt 1.2.2.2
Addiere und .
Schritt 1.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.4.2
Addiere und .
Schritt 2
Um auf der linken Seite ein Quadrat-Trinom zu bilden, ermittele einen Wert der gleich dem Quadrat der Hälfte von ist.
Schritt 3
Addiere den Ausdruck zu jeder Seite der Gleichung.
Schritt 4
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Potenziere mit .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Faktorisiere das perfekte Trinom-Quadrat zu .
Schritt 6
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6.2
Jede Wurzel von ist .
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.2.2
Subtrahiere von .
Schritt 6.3.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.4.2
Subtrahiere von .
Schritt 6.3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.