Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2
Schritt 2.1
Um die Wurzel auf der linken Seite der Ungleichung zu entfernen, quadriere beide Seiten der Ungleichung.
Schritt 2.2
Vereinfache jede Seite der Ungleichung.
Schritt 2.2.1
Benutze , um als neu zu schreiben.
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Vereinfache .
Schritt 2.2.2.1.1
Multipliziere die Exponenten in .
Schritt 2.2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.2.2.1.2
Vereinfache.
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 2.3.2.2
Vereinfache die linke Seite.
Schritt 2.3.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.3.2.2.2
Dividiere durch .
Schritt 2.3.2.3
Vereinfache die rechte Seite.
Schritt 2.3.2.3.1
Dividiere durch .
Schritt 2.4
Bestimme den Definitionsbereich von .
Schritt 2.4.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.4.2.2.2.2
Dividiere durch .
Schritt 2.4.2.2.3
Vereinfache die rechte Seite.
Schritt 2.4.2.2.3.1
Dividiere durch .
Schritt 2.4.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 2.5
Die Lösung besteht aus allen wahren Intervallen.
Schritt 3
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 4.2.2
Vereinfache die linke Seite.
Schritt 4.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.2.2.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Dividiere durch .
Schritt 5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 6