Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2
Addiere auf beiden Seiten der Ungleichung.
Schritt 3
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 4
Addiere auf beiden Seiten der Ungleichung.
Schritt 5
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 6
Schritt 6.1
Wandle die Ungleichung in eine Gleichung um.
Schritt 6.2
Faktorisiere aus heraus.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Faktorisiere aus heraus.
Schritt 6.2.3
Faktorisiere aus heraus.
Schritt 6.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4
Setze gleich .
Schritt 6.5
Setze gleich und löse nach auf.
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6.7
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 6.8
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Schritt 6.8.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.8.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.8.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.8.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.8.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.8.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.8.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.8.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 6.8.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 6.8.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 6.8.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 6.8.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 6.8.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 6.9
Die Lösung besteht aus allen wahren Intervallen.
oder
oder
Schritt 7
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 8
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 9
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 10