Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache jeden Term.
Schritt 2.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Schritt 4.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Faktorisiere aus heraus.
Schritt 4.2.3
Faktorisiere aus heraus.
Schritt 4.3
Schreibe als um.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Vereinige und vereinfache den Nenner.
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Potenziere mit .
Schritt 4.5.3
Potenziere mit .
Schritt 4.5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.5
Addiere und .
Schritt 4.5.6
Schreibe als um.
Schritt 4.5.6.1
Benutze , um als neu zu schreiben.
Schritt 4.5.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.5.6.3
Kombiniere und .
Schritt 4.5.6.4
Kürze den gemeinsamen Faktor von .
Schritt 4.5.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.5.6.4.2
Forme den Ausdruck um.
Schritt 4.5.6.5
Berechne den Exponenten.
Schritt 4.6
Vereinfache den Zähler.
Schritt 4.6.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 4.6.2
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 7
Schritt 7.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 7.1.1
Teile jeden Ausdruck in durch .
Schritt 7.1.2
Vereinfache die linke Seite.
Schritt 7.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.1.2.1.2
Dividiere durch .
Schritt 7.1.3
Vereinfache die rechte Seite.
Schritt 7.1.3.1
Dividiere durch .
Schritt 7.2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 7.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 7.3.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2
Vereinfache die linke Seite.
Schritt 7.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.2
Dividiere durch .
Schritt 7.3.3
Vereinfache die rechte Seite.
Schritt 7.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 9