Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Schritt 2.1
Vereinfache die linke Seite.
Schritt 2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2
Forme den Ausdruck um.
Schritt 2.2
Vereinfache die rechte Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.2
Multipliziere.
Schritt 2.2.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Schritt 3.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.1.2.3
Forme den Ausdruck um.
Schritt 3.4
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.5
Multipliziere die linke Seite aus.
Schritt 3.5.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.5.2
Der natürliche Logarithmus von ist .
Schritt 3.5.3
Mutltipliziere mit .
Schritt 3.6
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.6.1
Teile jeden Ausdruck in durch .
Schritt 3.6.2
Vereinfache die linke Seite.
Schritt 3.6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.1.2
Dividiere durch .
Schritt 3.6.3
Vereinfache die rechte Seite.
Schritt 3.6.3.1
Ersetze durch eine Näherung.
Schritt 3.6.3.2
Dividiere durch .
Schritt 3.6.3.3
Die logarithmische Basis von ist ungefähr .
Schritt 3.6.3.4
Dividiere durch .