Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schritt 1.1
Bewege .
Schritt 1.2
Stelle und um.
Schritt 2
Um die Anzahl möglicher positiver Wurzeln zu bestimmen, betrachte die Vorzeichen der Koeffizienten und zähle, wie oft die Vorzeichen der Koeffizienten von positiv nach negativ oder von negativ nach positiv wechseln.
Schritt 3
Da vom Term höchster Ordnung zum Term niedrigster Ordnung Vorzeichenwechsel erfolgen, gibt es höchstens positive Wurzeln (Vorzeichenregel von Descartes). Die anderen möglichen Anzahlen positiver Wurzeln werden bestimmt, indem Paare von Wurzeln voneinander subtrahiert werden .
Positive Wurzeln: oder
Schritt 4
Um die mögliche Anzahl negativer Wurzeln zu ermitteln, ersetze durch und wiederhole den Vorzeichenvergleich.
Schritt 5
Schritt 5.1
Wende die Produktregel auf an.
Schritt 5.2
Potenziere mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Wende die Produktregel auf an.
Schritt 5.5
Potenziere mit .
Schritt 5.6
Mutltipliziere mit .
Schritt 5.7
Wende die Produktregel auf an.
Schritt 5.8
Potenziere mit .
Schritt 5.9
Mutltipliziere mit .
Schritt 5.10
Wende die Produktregel auf an.
Schritt 5.11
Potenziere mit .
Schritt 5.12
Mutltipliziere mit .
Schritt 6
Da vom Term höchster Ordnung zum niedrigsten Term Vorzeichenwechsel erfolgen, gibt es höchstens negative Wurzeln (Vorzeichenregel von Descartes). Die anderen möglichen Anzahlen negativer Wurzeln werden bestimmt, indem Paare von Wurzeln voneinander subtrahiert werden (z. B. ).
Negative Wurzeln: oder
Schritt 7
Die mögliche Anzahl positiver Wurzeln ist oder und die mögliche Anzahl negativer Wurzeln ist oder .
Positive Wurzeln: oder
Negative Wurzeln: oder