Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Schritt 3.3.1
Vereinfache .
Schritt 3.3.1.1
Kombiniere und .
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2.2
Forme den Ausdruck um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Löse nach auf.
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2
Vereinfache die linke Seite.
Schritt 3.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.1.2
Dividiere durch .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache den Zähler.
Schritt 5.2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2
Forme den Ausdruck um.
Schritt 5.2.3.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.3.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.2.3.4
Vereinfache.
Schritt 5.2.4
Kürze den gemeinsamen Faktor von .
Schritt 5.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2
Forme den Ausdruck um.
Schritt 5.3.4
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 5.3.5
Die logarithmische Basis von ist .
Schritt 5.3.6
Mutltipliziere mit .
Schritt 5.3.7
Kürze den gemeinsamen Faktor von .
Schritt 5.3.7.1
Faktorisiere aus heraus.
Schritt 5.3.7.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.7.3
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .