Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3.3
Vereinfache jede Seite der Gleichung.
Schritt 3.3.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2
Vereinfache die linke Seite.
Schritt 3.3.2.1
Vereinfache .
Schritt 3.3.2.1.1
Multipliziere die Exponenten in .
Schritt 3.3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.1.2
Vereinfache.
Schritt 3.4
Löse nach auf.
Schritt 3.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.4.2.3
Vereinfache die rechte Seite.
Schritt 3.4.2.3.1
Vereinfache jeden Term.
Schritt 3.4.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4.2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4
Vereinfache jeden Term.
Schritt 5.2.4.1
Schreibe als um.
Schritt 5.2.4.1.1
Benutze , um als neu zu schreiben.
Schritt 5.2.4.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.4.1.3
Kombiniere und .
Schritt 5.2.4.1.4
Kürze den gemeinsamen Faktor von .
Schritt 5.2.4.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.1.4.2
Forme den Ausdruck um.
Schritt 5.2.4.1.5
Vereinfache.
Schritt 5.2.4.2
Wende das Distributivgesetz an.
Schritt 5.2.4.3
Mutltipliziere mit .
Schritt 5.2.4.4
Mutltipliziere mit .
Schritt 5.2.5
Vereinfache Terme.
Schritt 5.2.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.5.1.1
Addiere und .
Schritt 5.2.5.1.2
Addiere und .
Schritt 5.2.5.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.2.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Wende das Distributivgesetz an.
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.4.2
Faktorisiere aus heraus.
Schritt 5.3.4.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.4
Forme den Ausdruck um.
Schritt 5.3.5
Multipliziere.
Schritt 5.3.5.1
Mutltipliziere mit .
Schritt 5.3.5.2
Mutltipliziere mit .
Schritt 5.3.6
Kürze den gemeinsamen Faktor von .
Schritt 5.3.6.1
Faktorisiere aus heraus.
Schritt 5.3.6.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.3
Forme den Ausdruck um.
Schritt 5.3.7
Vereinfache den Ausdruck.
Schritt 5.3.7.1
Mutltipliziere mit .
Schritt 5.3.7.2
Subtrahiere von .
Schritt 5.3.7.3
Addiere und .
Schritt 5.3.8
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .