Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
Schritt 1
Das Maximum einer quadratischen Funktion tritt bei auf. Wenn negativ ist, ist der Maximalwert der Funktion .
tritt auf bei
Schritt 2
Schritt 2.1
Setze die Werte von und ein.
Schritt 2.2
Entferne die Klammern.
Schritt 2.3
Vereinfache .
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2
Forme den Ausdruck um.
Schritt 2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3
Multipliziere .
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.4.1
Faktorisiere aus heraus.
Schritt 3.2.1.4.2
Faktorisiere aus heraus.
Schritt 3.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.4.4
Forme den Ausdruck um.
Schritt 3.2.1.5
Schreibe als um.
Schritt 3.2.1.6
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.6.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.6.2
Forme den Ausdruck um.
Schritt 3.2.2
Ermittle den gemeinsamen Nenner.
Schritt 3.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Mutltipliziere mit .
Schritt 3.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.2.2.5
Mutltipliziere mit .
Schritt 3.2.2.6
Mutltipliziere mit .
Schritt 3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4
Vereinfache den Ausdruck.
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Addiere und .
Schritt 3.2.4.3
Addiere und .
Schritt 3.2.5
Die endgültige Lösung ist .
Schritt 4
Benutze die - und -Werte, um zu ermitteln, wo das Maximum auftritt.
Schritt 5